有些代码不应该被忘记

scutjy2015@163.com

排序:
默认
按更新时间
按访问量

梳理TensorFlow模型在Jetson TX2上进行inference的主要流程

1 内容概述 本文档主要内容:梳理TensorFlow模型在Jetson TX2上进行inference的主要流程,涉及到相关软件的安装、依赖库的编译配置以及PC端的深度网络模型在Jetson TX2的移植步骤。 2 开发环境 注意:PC端和Jetson TX2所使用的TensorRT安...

2017-11-29 10:07:16

阅读数:2489

评论数:5

opencv 玻璃镜面缺陷检测,缺陷信息标记及提取

玻璃镜面缺陷检测,包括划痕检测,点缺陷检测,直线检测等。代码程序如下: // // //#include //#include //#include //#include //using namespace std; // //int main() //{ // IplImage *src...

2017-06-30 19:46:31

阅读数:3985

评论数:8

26条深度学习经验

在本文中,他精炼地总结了学到的26个有代表性的知识点,包括分布式表示,tricks的技巧,对抗样本的训练,Neural Machine Translation,以及Theano、Nvidia Digits等,非常具有参考价值。 八月初,我有幸有机会参加了蒙特利尔深度学习暑期学校的课程,由最知...

2017-06-15 11:18:32

阅读数:769

评论数:0

Ian Goodfellow,Yoshua Bengio合著《深度学习》教材,2017年最新中文版下载

Ian Goodfellow,Yoshua Bengio合著《深度学习》教材,2017年最新中文版下载。 链接:https://pan.baidu.com/s/1gf7o7ez 密码:ybg7 密码:扫描下方二维码,回复关键字“new”即可。还有更多关于深度强化学习,斯坦福2017年最新Te...

2017-06-14 15:54:50

阅读数:1368

评论数:0

深度学习与计算机视觉梳理思考

前深度学习时代的计算机视觉 互联网巨头看重深度学习当然不是为了学术,主要是它能带来巨大的市场。那为什么在深度学习出来之前,传统算法为什么没有达到深度学习的精度? 在深度学习算法出来之前,对于视觉算法来说,大致可以分为以下5个步骤:特征感知,图像预处理,特征提取,特征筛选,推理预测与识别。早...

2017-04-26 16:49:02

阅读数:431

评论数:0

各类识别、深度学习-开源代码文献梳理

可以看看这个 http://blog.csdn.net/workerwu/article/details/46537849 Deep Residual Networks Deep Residual Learning for Image Recognition https://github.co...

2017-04-25 11:52:57

阅读数:439

评论数:0

深度学习检测方法梳理

1. R-CNN:Rich feature hierarchies for accurate object detection and semantic segmentation 技术路线:selective search + CNN + SVMs Step1:候选框提取(selectiv...

2017-04-24 18:24:55

阅读数:2235

评论数:0

TensorFlow实战:Mask R-CNN介绍与实现,instance segmention

目录(?)[+] 简介 论文地址:Mask R-CNN 源代码:matterport - github 代码源于matterport的工作组,可以在github上fork它们组的工作。 软件必备 复现的Mask R-CNN是基于Python3,Keras,TensorFlow。 Pyth...

2017-12-05 08:43:55

阅读数:646

评论数:1

ubuntu16.04 完整make安装opencv 3.2.0

ubuntu下卸载opencv步骤 1. 进入build文件夹,命令行执行make uninstall 2. cd .. 3. sudo rm -r build 4. sudo rm -r /usr/local/include/opencv2 /usr/local/include/open...

2017-11-29 10:04:43

阅读数:339

评论数:0

图像识别和图像分割项目相关步骤

1 数据采集 1)不同地点、不同环境、不同天气等复杂环境下采集; 2)主要分为:石子路、水泥路、草地、土泥路、模板路、其他; 3)使用LI-OV580 双目摄像头采集,像素30-200万可调 2 数据预处理 参考链接:http://blog.csdn.net/qq_31531635/article...

2017-08-18 20:03:19

阅读数:1018

评论数:0

FCN相关问题的一些整理 (FCN VGG Segnet resnet )

1  FCN 相对CNN的优点 1) 2014年,加州大学伯克利分校的Long等人提出的完全卷积网络(Fully Convolutional Networks),推广了原有的CNN结构,在不带有全连接层的情况下能进行密集预测。 这种结构的提出使得分割图谱可以生成任意大小的图像,且与图像块分类方法...

2017-08-18 09:26:48

阅读数:1667

评论数:0

语义分割,ICNet for Real-Time Semantic Segmentation

本文的工作很具有实用价值。 本文提出了一个实时性的语义分割网络,Image Cascade Network(ICNet),在兼顾实时性的同时比原来的Fast Semantic Segmentation,比如SQ, SegNet, ENet等大大地提高了准确率,足以与Deeplab v2媲美,给语...

2017-07-19 10:51:15

阅读数:1146

评论数:0

深度学习新星:GAN的基本原理、应用和走向

转载自:http://www.leiphone.com/news/201701/Kq6FvnjgbKK8Lh8N.html GAN是“生成对抗网络”(Generative Adversarial Networks)的简称,由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领...

2017-07-18 19:59:45

阅读数:564

评论数:0

RCNN学习笔记(7):Faster R-CNN 英文论文翻译笔记

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun reference link...

2017-07-14 10:04:49

阅读数:486

评论数:0

RCNN学习笔记(6):YOLO

Reference link: http://blog.csdn.NET/tangwei2014 这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO。 虽然目前版本还有一些硬伤,但是解决...

2017-07-14 10:03:03

阅读数:222

评论数:0

RCNN学习笔记(5):faster rcnn

reference link: http://blog.csdn.net/shenxiaolu1984/article/details/51152614 http://blog.csdn.net/luopingfeng/article/details/51245694 http://blog.cs...

2017-07-14 10:00:57

阅读数:237

评论数:0

RCNN学习笔记(4):fast rcnn

以下介绍具体包括如下4个stage算法: 1.Rol pooling layer(fc)  2.Multi-task loss(one-stage)  3.Scale invariance(trade off->single scale(compare with multi-scale fo...

2017-07-14 09:59:59

阅读数:167

评论数:0

深度学习之各种优化算法

机器之心编译 参与:沈泽江   梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法。本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法。我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练(神经网络或是...

2017-07-13 11:04:19

阅读数:358

评论数:0

RCNN学习笔记(3):Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPP-net)

基础框架: CNN网络需要固定尺寸的图像输入,SPPNet将任意大小的图像池化生成固定长度的图像表示,提升R-CNN检测的速度24-102倍。 固定图像尺寸输入的问题,截取的区域未涵盖整个目标或者缩放带来图像的扭曲。 事实上,CNN的卷积层不需要固定尺寸的图像,全连接层是需要固定...

2017-07-12 10:53:46

阅读数:163

评论数:0

RCNN学习笔记(2):Rich feature hierarchies for accurate object detection and semantic segmentation

reference link: http://blog.csdn.NET/hjimce/article/details/50187029 一、相关理论    本篇博文主要讲解2014年CVPR上的经典paper:《Rich feature hierarchies for...

2017-07-12 10:52:21

阅读数:457

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭