1、常用组件
HDFS:分布式文件系统
MapReduce:分布式计算框架
Yarn:集群资源管理系统
-------- 以上是三者是Hadoop核心组件 --------
Zookeeper:分布式协作服务
Hbase:分布式列存储数据库
Hive:数据仓库
Sqoop:数据同步工具
Pig:基于hadoop的数据流系统
Mahout:数据挖掘算法库
Flume:日志收集工具
2、HDFS角色概念
`client:切分文件,每块128M,可以有多个副本,访问HDFS,与namenode交互获取获取文件信息,与datanode交互读取和写入数据。
`namenode:记录块的位置信息,配置副本策略,处理client请求。(要做高可用)
`secondarynamenode:是namenode的备份(非热备),定期合并fsimage(块和位置信息的映射)以及fsedits(补丁文件,为了修改数据变更日志)。(要做高可用)
`datanode:存储实际数据,把数据位置信息发送给namenode
namenode、secondarynamenode、datanode之间关系如下:
3、MapReduce角色概念
`JobTracker:相当于master节点(只有一个),管理所有任务、监控、错误处理。将任务分解成一系列的小任务,把小任务分配给TaskTracker。
`TaskTracker:相当于slave节点(可以有多个),运行Map Task和Reduce Task与JobTracker交互,汇报任务状态。
`Map Task:解析数据,将数据传递给用户编写的map程序去执行,将结果写入到本地磁盘,若是map-only作业,则直接将结果写入到HDFS中。
`Reduce Task:从Map Task的结果中读取数据,对数据进行排序,将数据按照分组传递给用户编写的reduce程序去执行。
JobTracker、TaskTracker、Map Task、Reduce Task之间关系如下:
4、Yarn角色概念
`ResourceManager:处理客户端请求,启动、监控ApplicationMaster、监控NodeManager,分配和调度资源。(要做高可用)
`NodeManager:单个节点上的资源管理,处理来自ResourceManager和ApplicationMaster的命令,执行运算。
`ApplicationMaster:进行数据切分,为应用程序申请资源并分配给内部任务,监控任务,容错。
`Container:任务运行环境的抽象,封装了CPU、内存等一系列资源。用于资源的分配和调度。
5、单机Hadoop安装与配置
yum -y install java-1.8.0-openjdk-devel # 提供jsp角色查看工具,自动安装openjdk
tar -xf hadoop-2.7.7.tar.gz # 这里使用的是2.7.7版本的hadoop
mv hadoop-2.7.7 /usr/local/hadoop
rpm -ql java-1.8.0-openjdk # 查看jdk安装的目录
vim /usr/local/hadoop/etc/hadoop/hadoop-env.sh # hadoop运行时的环境变量
export JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.161-2.b14.el7.x86_64/jre" # 通过rpm -ql 查找到的jdk安装的目录,25行。
export HADOOP_CONF_DIR="/usr/local/hadoop/etc/hadoop" # hadoop配置文件目录,33行。
cd /usr/local/hadoop
./bin/hadoop version # 查看hadoop版本
6、使用hadoop统计单词个数
cd /usr/local/hadoop
mkdir ./input
cp ./*.txt ./input # 将数据放在./input这个目录下(目录名字可以自定义)
./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.7.jar wordcount ./input./output # jar表示运行jar包,./input是输入的数据的目录,./output是输出的结果的目录
cat ./output/* # 查看所有输出结果