20.【线性代数】——坐标系中,平行四边形面积=矩阵的行列式

三 坐标系中,平行四边形面积=矩阵的行列式

定理

在坐标系中,由向量(a,b)和向量(c,d)组成平行四边形的面积= 矩阵 [ a b c d ] \begin{bmatrix} a&b\\ c&d \end{bmatrix} [acbd]的行列式,即:
平行四边形的面积 = ∣ a b c d ∣ = a d − b c 平行四边形的面积= \begin{vmatrix} a&b\\ c&d \end{vmatrix} = ad-bc 平行四边形的面积= acbd =adbc

验证

h在这里插入图片描述

S表示面积
S 红4 = c d S 绿5 = a b S 橙6 = a b S 黄7 = c d S_{\text{红4}} = cd \newline S_{\text{绿5}} = ab \newline S_{\text{橙6}} = ab \newline S_{\text{黄7}} = cd S4=cdS绿5=abS6=abS7=cd
得出
S 绿5 = S 橙6 S 红4 = S 黄7 S 蓝8 + S 绿5 + S 红4 = a d S_{\text{绿5}}=S_{\text{橙6}} \newline S_{\text{红4}} = S_{\text{黄7}} \newline S_{\text{蓝8}} + S_{\text{绿5}} + S_{\text{红4}} = ad S绿5=S6S4=S7S8+S绿5+S4=ad

在这里插入图片描述
图中, S 紫 = S 紫1 + S 紫2 + S 紫3 = b c S_{\text{紫}} = S_{\text{紫1}} + S_{\text{紫2}} +S_{\text{紫3}} = bc S=S1+S2+S3=bc
现在看平行四边形的面积,如下:
S 平行四边形 = S 蓝8 + ( S 橙6 − S 紫2 ) + ( S 黄7 − S 紫1 ) − S 紫3 S_{\text{平行四边形}} = S_{\text{蓝8}} + (S_{\text{橙6}} - S_{\text{紫2}}) + (S_{\text{黄7}} - S_{\text{紫1}}) - S_{\text{紫3}} S平行四边形=S8+(S6S2)+(S7S1)S3

减去 S 紫3 S_{\text{紫3}} S3,是因为 S 紫3 S_{\text{紫3}} S3加了两次

S 平行四边形 = S 蓝8 + ( S 橙6 − S 紫2 ) + ( S 黄7 − S 紫1 ) − S 紫3 = S 蓝8 + S 橙6 + S 黄7 − S 紫1 − S 紫2 − S 紫3 = ( S 蓝8 + S 绿5 + S 红4 ) − ( S 紫1 + S 紫2 + S 紫3 ) = a d − b c \begin{aligned} S_{\text{平行四边形}} & = S_{\text{蓝8}} + (S_{\text{橙6}} - S_{\text{紫2}}) + (S_{\text{黄7}} - S_{\text{紫1}}) - S_{\text{紫3}} \newline & = S_{\text{蓝8}} + S_{\text{橙6}} + S_{\text{黄7}} - S_{\text{紫1}} - S_{\text{紫2}}-S_{\text{紫3}} \newline & = (S_{\text{蓝8}} + S_{\text{绿5}} + S_{\text{红4}}) - (S_{\text{紫1}} +S_{\text{紫2}}+S_{\text{紫3}}) \newline & = ad-bc \end{aligned} S平行四边形=S8+(S6S2)+(S7S1)S3=S8+S6+S7S1S2S3=(S8+S绿5+S4)(S1+S2+S3)=adbc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sda42342342423

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值