描述
五一到了,PKU-ACM队组织大家去登山观光,队员们发现山上一个有N个景点,并且决定按照顺序来浏览这些景点,即每次所浏览景点的编号都要大于前一个浏览景点的编号。同时队员们还有另一个登山习惯,就是不连续浏览海拔相同的两个景点,并且一旦开始下山,就不再向上走了。队员们希望在满足上面条件的同时,尽可能多的浏览景点,你能帮他们找出最多可能浏览的景点数么?
输入
Line 1: N (2 <= N <= 1000) 景点数
Line 2: N个整数,每个景点的海拔
输出
最多能浏览的景点数
样例输入
8
186 186 150 200 160 130 197 220
样例输出
4
解题思路:
ll存放以到达当前数为最高点的左边的景点数,rr存放以到达当前数为最高点的右边的景点数
细节处理:
对于ll,rr数组初始化为1,表示该景点观看,还有就是i和l,i和r的迭代方式,因为算ll的时候要知道数组中每个数左边的值,所以从小到大,算rr时相反,最后输出的时候因为当前值在ll和rr中算了两次所以减1输出
代码:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,i;
int a[1005];
int ll[1005];
int rr[1005];
//int dp[1005]={0};
cin>>n;
for(i=1;i<=n;i++)
{cin>>a[i]; ll[i]=rr[i]=1;}
int l,r,max=0;
for(i=1;i<=n;i++)
{
for(l=1;l<=i-1;l++)
if(a[l]<a[i])
{if(1+ll[l]>ll[i]) ll[i]=1+ll[l];}
}
for(i=n;i>=1;i--)
{
for(r=n;r>=i+1;r--)
if(a[r]<a[i])
{if(1+rr[r]>rr[i]) rr[i]=1+rr[r];}
}
for(i=1;i<=n;i++)
{
if(max<rr[i]+ll[i]) max=rr[i]+ll[i];
}
cout<<max-1;
return 0;
}