F - 06----深搜

Description

Technicians in a pathology lab analyze digitized images of slides. Objects on a slide are selected for analysis by a mouse click on the object. The perimeter of the boundary of an object is one useful measure. Your task is to determine this perimeter for selected objects. 

The digitized slides will be represented by a rectangular grid of periods, '.', indicating empty space, and the capital letter 'X', indicating part of an object. Simple examples are 
XX   Grid 1       .XXX   Grid 2 
XX                .XXX 
                  .XXX 
                  ...X 
                  ..X. 

 X... 

An X in a grid square indicates that the entire grid square, including its boundaries, lies in some object. The X in the center of the grid below is adjacent to the X in any of the 8 positions around it. The grid squares for any two adjacent X's overlap on an edge or corner, so they are connected. 
XXX 
XXX    Central X and adjacent X's 
XXX 

An object consists of the grid squares of all X's that can be linked to one another through a sequence of adjacent X's. In Grid 1, the whole grid is filled by one object. In Grid 2 there are two objects. One object contains only the lower left grid square. The remaining X's belong to the other object. 

The technician will always click on an X, selecting the object containing that X. The coordinates of the click are recorded. Rows and columns are numbered starting from 1 in the upper left hand corner. The technician could select the object in Grid 1 by clicking on row 2 and column 2. The larger object in Grid 2 could be selected by clicking on row 2, column 3. The click could not be on row 4, column 3. 

One useful statistic is the perimeter of the object. Assume each X corresponds to a square one unit on each side. Hence the object in Grid 1 has perimeter 8 (2 on each of four sides). The perimeter for the larger object in Grid 2 is illustrated in the figure at the left. The length is 18. 

Objects will not contain any totally enclosed holes, so the leftmost grid patterns shown below could NOT appear. The variations on the right could appear: 
Impossible   Possible 

XXXX         XXXX   XXXX   XXXX 
X..X         XXXX   X...   X... 

XX.X         XXXX   XX.X   XX.X 
XXXX         XXXX   XXXX   XX.X 

.....        .....  .....  ..... 

..X..        ..X..  ..X..  ..X.. 

.X.X.        .XXX.  .X...  ..... 

..X..        ..X..  ..X..  ..X.. 

.....        .....  .....  ..... 

Input

The input will contain one or more grids. Each grid is preceded by a line containing the number of rows and columns in the grid and the row and column of the mouse click. All numbers are in the range 1-20. The rows of the grid follow, starting on the next line, consisting of '.' and 'X' characters. 

The end of the input is indicated by a line containing four zeros. The numbers on any one line are separated by blanks. The grid rows contain no blanks. 

Output

For each grid in the input, the output contains a single line with the perimeter of the specified object.

Sample Input

2 2 2 2
XX
XX
6 4 2 3
.XXX
.XXX
.XXX
...X
..X.
X...
5 6 1 3
.XXXX.
X....X
..XX.X
.X...X
..XXX.
7 7 2 6
XXXXXXX
XX...XX
X..X..X
X..X...
X..X..X
X.....X
XXXXXXX
7 7 4 4
XXXXXXX
XX...XX
X..X..X
X..X...
X..X..X
X.....X
XXXXXXX
0 0 0 0

Sample Output

8
18
40
48
8
题意:有一个给定大小的矩阵,分为多个X块(8个方向相邻为一块),给定一个坐标求出当前坐标所在X块的周长

解题思路:题目长的吓人,但还是比较水的题,注意:求周长时是看4个方向,递归找同X块是8个方向,所以置两个方向数组,对于记录块状态的bool数组要置2个,也是用来一个判断周长,一个用来找同X块(此时会对访问过的X点更改状态,若用同一bool数组会破坏周长判断)

代码:

#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
int row,col,cnt;
bool ok[21][21];
bool ok1[21][21];
int dx[8]={0,0,-1,1,-1,1,-1,1};
int dy[8]={-1,1,0,0,1,-1,-1,1};
int ddx[4]={0,0,-1,1};
int ddy[4]={-1,1,0,0};
void solve(int x,int y)
{
    for(int i=0;i<4;i++)
    {
        if(y+ddy[i]<0||y+ddy[i]>=col) cnt++;
        if(x+ddx[i]<0||x+ddx[i]>=row) cnt++;
        if(y+ddy[i]>=0&&y+ddy[i]<col&&x+ddx[i]>=0&&x+ddx[i]<row&&!ok1[x+ddx[i]][y+ddy[i]]) cnt++;
    }
    for(int k=0;k<8;k++)
    {
        if(x+dx[k]<row&&x+dx[k]>-1&&y+dy[k]<col&&y+dy[k]>-1&&ok[x+dx[k]][y+dy[k]])
        {
            ok[x+dx[k]][y+dy[k]]=false;
            solve(x+dx[k],y+dy[k]);
        }
    }
}
int main()
{
    int i,j,x,y;
    while(scanf("%d%d%d%d",&row,&col,&x,&y),row+col+x+y)
    {
        string s; getchar(); //在输入矩阵前吸收一个空格
        memset(ok,false,sizeof(ok));
        memset(ok1,false,sizeof(ok1));
        for(i=0;i<row;i++)
        {
            getline(cin,s);
            for(j=0;j<col;j++)
            if(s[j]=='X') {ok[i][j]=true; ok1[i][j]=true;}
        }
        cnt=0; x--; y--; //数组下标从0开始
        ok[x][y]=false;
        solve(x,y);
        printf("%d\n",cnt);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值