计蒜客 30990 - 2018ICPC南京网络预赛 - A题 - An Olympian Math Problem - 简单数学题

题目链接:https://nanti.jisuanke.com/t/30990

题意:输入n,有S=1*1!+2*2!+....+(n-1)*(n-1)!,求S%n。

解析:这是一道签到题,很多队应该都是猜的结论,看到别人写的很清楚的证明,直接贴上。

题解原文来自:https://www.cnblogs.com/dilthey/p/9571298.html

1+S(n)

=1+1×1!+2×2!+⋯+(n−1)×(n−1)!

=2×1!+2×2!+⋯+(n−1)×(n−1)!=2!+2×2!+⋯+(n−1)×(n−1)!=3×2!+⋯+(n−1)×(n−1)!

=3!+3×3!+⋯+(n−1)×(n−1)!=4×3!+⋯+(n−1)×(n−1)!

=⋯  = (n−1)!+(n−1)×(n−1)!  = n×(n−1)!  = n!

所以有 S(n) mod n = (n!−1) mod n = (n!+n−1) mod n = (n! mod n)+((n−1) mod n)= n−1

代码:

直接输出n-1即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值