题目链接:https://nanti.jisuanke.com/t/30990
题意:输入n,有S=1*1!+2*2!+....+(n-1)*(n-1)!,求S%n。
解析:这是一道签到题,很多队应该都是猜的结论,看到别人写的很清楚的证明,直接贴上。
题解原文来自:https://www.cnblogs.com/dilthey/p/9571298.html
1+S(n)
=1+1×1!+2×2!+⋯+(n−1)×(n−1)!
=2×1!+2×2!+⋯+(n−1)×(n−1)!=2!+2×2!+⋯+(n−1)×(n−1)!=3×2!+⋯+(n−1)×(n−1)!
=3!+3×3!+⋯+(n−1)×(n−1)!=4×3!+⋯+(n−1)×(n−1)!
=⋯ = (n−1)!+(n−1)×(n−1)! = n×(n−1)! = n!
所以有 S(n) mod n = (n!−1) mod n = (n!+n−1) mod n = (n! mod n)+((n−1) mod n)= n−1
代码:
直接输出n-1即可。