例1.4-1Sumdiv

问题描述:

求A^B的所有约数之和,并对其取模9901再输出。

涉及定理:

(1)整数的唯一分解定理:

任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p1^k2)*...*(pn^kn),其中pi均为素数。

(2)约数和公式:

对于已经分解的整数A=(p1^k1)*(p1^k2)*...*(pn^kn),其所有因子和为:

S=(1+p1+p1^2+...+p1^k1*(1+p2+p2^2+...+p2^k2*...*(1+pn^k1+...+pn^kn)

(3)同余模公式:

(a+b)%m=(a%m+b%m)%m

(a*b)%m=(a%m*b%m)%m

解题步骤:

对A进行素因子分解得到pi ki\rightarrow根据公式求A^B所有因数之和

(1)对A进行素因子分解:

A首先对对第一个素数2不断取模,并记录2出现的次数k,当A%2!=0时,则A=A/2^k继续对下一个素数取模......以此类推,知道A=1为止。

注意特殊判定,当A本身就是素数时,本身就是素数分解式。

最后得到A=(p1^k1)*(p1^k2)*...*(pn^kn),则A^B=p1^(k1*B)*p1^(k2*B)*...*pn^(kn*B)

(2)求A^B所有因数之和

S=(1+p1+p1^2+...+p1^(k1*B)*(1+p2+p2^2+...+p2^(k2*B)*...*(1+pn^k1+...+pn^(kn*B))

技巧:

(3)用递归二分求等比数列:

a.若n为奇数,一共有偶数项:

1+p+p^2+p^3+...+p^n=(1+p^(n/2+1))+p*(1+p^(n/2+1))+...+p^(n/2)*(1+p^(n/2+1))=(1+p+p^2+...+p^(n/2))*(1+p^(n/2+1))   (递归二分求和)

b.若n为偶数,一共有奇数项:

1+p+p^2+p^3+...+p^n=(1+p^(n/2+1))+p*(1+p^(n/2+1))+...+p^(n/2)*(1+p^(n/2+1))=(1+p+p^2+...+p^(n/2))*(1+p^(n/2+1))+p^(n/2)  (递归二分求和)

(4)反复平方法求幂次式p^n:

这是本题关键所在,求n次幂方法的好坏决定了本题是否会超时。

以p=2,n=8为例,

定义sp=1;检查n是否大于零。

while,n为奇数,sq*=p

{

n=8>0,p*=p;n>>1;

n=4>0,p*=p;n>>1;

n=2>0,p*=p;n>>1则n为奇数,sq*=p;

n=1>0,p*=p;p*=p;n>>1,则n=0,跳出循环。

}

代码:

#include<iostream>
#include<cmath>
using namespace std;
#define LL long long
const int mod=9901;
int A,B;
int p[10001],n[10001];

LL power(LL p,LL n)//反复平方法求(p^n)%mod
{
    LL sq=1;
    while(n)
    {
        if(n&1)sq=(sq*p)%mod;
        n>>=1;
        p=p*p%mod;
    }
    return sq;
}

LL sum(LL p,LL n)//递归二分求1+p+p^2+p^3+...+p^n
{
    if(n==0)return 1;
    if(n%2)//n为奇数,则1+p+p^2+p^3+...+p^n=(1+p+p^2+...+p^(n/2))*(1+p^(n/2+1))
        return (sum(p,n/2))*(1+power(p,n/2+1))%mod;
    else //n为偶数,则1+p+p^2+p^3+...+p^n=(1+p+p^2+...+p^(n/2))*(1+p^(n/2+1))+p^(n/2)
        return ((sum(p,n/2))*(1+power(p,n/2+1))+power(p,n/2))%mod;
}

int main()
{
    while(cin>>A>>B)
    {
        int k=0;
        for(int i=2;i<=sqrt(A);)//对A进行素因子分解
        {
            if(A%i==0)
            {
                p[++k]=i;//p数组储存A的所有
                n[k]=0;
                while(!A%i)//除尽A中所有k
                {
                    n[k]++;
                    A/=i;
                }
            }
            if(i==2)i++;
            else i+=2;
        }
        if(A!=1)//A为质数,特判
        {
            p[++k]=A;
            n[k]=1;
        }
        int ans=1;
        for(int i=1;i<=k;i++)
        {
            ans=(ans*sum(p[i],n[i]*B)%mod)%mod;
        }
        cout<<ans<<endl;
    }
    return 0;
}

 

这道题目是求一个表达式的结果,表达式中包含了欧拉函数和向下取整操作。需要注意的是,最后结果需要对一个给定的mod取模。 首先,我们可以把这个表达式分成两部分来计算。第一部分是计算φ(i)的前缀和,第二部分是计算⌊n/i⌋的前缀和。 对于第一部分,我们可以使用线性筛法来计算φ(i)的前缀和。具体步骤如下: 1. 初始化一个数组phi,大小为k+1,用来保存欧拉函数的值。 2. 初始化一个数组prime,用来保存质数。 3. 初始化一个数组isPrime,大小为k+1,用来标记是否是质数。 4. 初始化一个数组sumPhi,大小为k+1,用来保存φ(i)的前缀和。 5. 遍历2到k的每个数i,如果isPrime[i]为true,则将i加入到prime数组中,并且令phi[i] = i-1。 否则,找到i的最小质因数p,令phi[i] = phi[i/p] * p / (p-1)。 6. 遍历prime数组中的每个质数p,更新phi数组中所有p的倍数的值,令phi[i] = phi[i] * p / (p-1)。 7. 计算sumPhi数组的前缀和,即sumPhi[i] = sumPhi[i-1] + phi[i]。 对于第二部分,我们可以使用容斥原理来计算⌊n/i⌋的前缀和。具体步骤如下: 1. 初始化一个数组sumDiv,大小为k+1,用来保存⌊n/i⌋的前缀和。 2. 遍历1到k的每个数i,计算sumDiv[i] = sumDiv[i-1] + ⌊n/i⌋。 3. 使用容斥原理,减去所有的sumDiv[i] * φ(i),其中i为k的因子。 最后,将第一部分和第二部分的结果相乘,并对mod取模,即可得到最终结果。 以上就是求解这道题目的思路和步骤。希望对你有帮助!如果有任何疑问,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值