Leetcode 167. 两数之和 II - 输入有序数组

本文介绍了解决有序数组中寻找两个数使它们的和为目标值的问题。提供了两种方法:双指针法和二分查找法,分别实现了O(n)和O(nlogn)的时间复杂度。

题目描述

数满足相加之和等于目标数 target 。

函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标 从 1 开始计数 ,所以答案数组应当满足 1 <= answer[0] < answer[1] <= numbers.length 。

你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/two-sum-ii-input-array-is-sorted
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

c++

方法1: 时间复杂度O(n) 双指针法

class Solution {
public:
    //注意输入是有序数组; 我第一次尝试是使用的双层循环的思想,提交后显示超时;果然,暴力不科学
    vector<int> twoSum(vector<int>& numbers, int target) {
        vector<int> answer;  //返回的结果
        int l=0;
        int r=numbers.size()-1;  //左右双指针
        while(l<r){
                if(numbers.at(l)+numbers.at(r)==target){
                     answer.push_back(l+1);
                     answer.push_back(r+1);
                     break;
                }else if(numbers.at(l)+numbers.at(r)<target){
                    l++;
                }else {
                    r--;
                }
        }
        
    return answer;
    }
};

方法二:时间复杂度 O(nlogn)

class Solution {
public:
    //方法2:使用二分查找,从头开始的每一个元素i,从[i+1,n-1]种二分查找满足条件的另外一个元素
    vector<int> twoSum(vector<int>& numbers, int target) {
        vector<int> answer;  //返回的结果
        for(int i=0;i<numbers.size();i++){
            int left_value=target-numbers[i];
             int l=i+1;
            int r=numbers.size()-1;  //左右双指针
             while(l<=r){
                    int mid=l+(r-l)/2;
                    if(numbers[mid]==left_value){
                        answer.push_back(i+1);
                        answer.push_back(mid+1);
                        return answer;
                    }else if(numbers[mid]<left_value){
                        l=mid+1;
                    }else {
                         r=mid-1;
                    }
        }
        
        }
    return answer;
    }
};
内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值