快速乘与快速幂

两种方法的好处是防止中间运行时有特别大的数据会溢出的可能,在这两种方法的中间步骤中可以及时取模,防止数据溢出快速幂:二进制取幂的想法是,我们将取幂的任务按照指数的 二进制表示 来分割成更小的任务。。
快速幂时间复杂度log2(n)

int ksc(int a,int b){
	int value=a,ans=0;
	while(b!=0){
		if(b%2!=0) ans+=value; 
		value+=value;
		b/=2;
	}
	return ans;
}

快速幂

//递归写法(可参考斐波纳猰)
ll ksm(ll a,ll  b){
	if(b==1){
		return a;//临界点
	}
	
	ll t=ksm(a,b/2);
	if(b%2==0){
		return t*t;//关系式
	}
	return t*t*a;//关系式
}

//非递归写法
两种写法时间复杂度相同,但因为递归需要一定的开销,所以下面写法更优
ll ksm(ll a,ll b){
	a%=M;
	ll ji=1;
	while(b>0){
		if(b%2!=0) ji=ji*a%M; 
		a=a*a%M;
		b=b>>1;
	}
	return ji;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值