点击进入——直线
爆红了好几次呢,关于这题我最想说的一点,还是数学,如果数学不到位,这道题就得不到分,我第一次的思路是只根据斜率k值来计算,但是这个思路不可行,想不出来结果。后来学长说由k值和b值来做,就是建立一个直角坐标系由两点确定一条直线,公式y=kx+b来做,对,这就是大方向的思路,是可行的。
中间交代码时爆红了好几次,这就是我要说的数学了,涉及c++语言的高精度损失,但是可以用Java的数字转字符串的功能补救,但是c++没有封装这样的函数,这样补救就特别麻烦。
参考了他人的博客,发现了错误,见代码
#include<bits/stdc++.h>
using namespace std;
int main(){
pair<float,float> p;
set<pair<float,float>> s;
for(int x=0;x<20;x++){
for(int y=0;y<21;y++){
for(int i=0;i<20;i++){
for(int j=0;j<21;j++){
if((i==x)||(j==y)) continue;
p.first=(float)(j-y)/(i-x);
// p.second=y-((j-y)*1.0/(i-x))*x;
// p.second= (j * (i - x) - (j - y) * i) * 1.0 / (i - x);
p.second=(float)(i*y-x*j)/(i-x);
s.insert(pair<float,float>(p.first,p.second));
}
}
}
}
cout<<s.size()+20+21;
}
导致出错的地方,p.second=(float)y-p.first*x;之前我是这样写的,但是p.first=(float)(j-y)/(i-x);这样p.second=(float)y-((float)(j-y)/(i-x))*x ,除号的地方一定会有精度损失,再来个乘号,再来个被减号更容易造成损失。
改法:利用通分化简该式子,先来乘号不会有精度损失,再来除号就在中间过程避免了精度损失。
其他的地方都没有问题,这类型的题有时会考,接下来多注意
补充:解决精度误差去重的方法在这篇博客,用到了结构体排序比较麻烦
第十二届蓝桥杯软件类省赛C++B组第一场 填空题