2020-02-20 洛谷刷题P1144—— 最短路计数问题

16 篇文章 2 订阅
15 篇文章 0 订阅

摘要:

最短路计数问题


问题描述:

题目连接洛谷P1144最短路计数


算法分析:

本题实际上是一道简单的最短路求解的模板题。在迪杰斯特拉算法或者spfa算法模板的基础上加上负责计数的数组count即可。

值得注意的是本题目是无向不加权图,因此也可以使用BFS求解。


代码以及详细注释:

#include <iostream>
#include <vector>
#include <queue>
#define INF 10000000
using namespace std;
#pragma warning(disable:4996)

struct edge {
	int to;
	int next;
	int w;
};

struct Node {
	int pos;
	int w;
	Node(int _to = 0, int _w = 0 ) :pos(_to), w(_w) {};
	bool operator()(Node& n1, Node& n2) {
		return n1.w > n2.w;
	}
};


class Solution {
public:
	int n, m;
	//链式前向星建图
	int cnt = 0;
	vector<int> head;
	vector<edge> e;
	
	vector<int> dfs;
	vector<int> count;
	//堆优化
	priority_queue<Node, vector<Node>, Node> q;
	vector<bool> visit;  //
	
	inline void add_edge(int u, int v, int w) {
		cnt++;
		e[cnt].to = v;
		e[cnt].w = w;
		e[cnt].next = head[u];
		head[u] = cnt;
	}
	void dijskral_count() {
		cin >> n >> m;
		head.resize(n + 1, 0);
		count.resize(n + 1, 0);
		dfs.resize(n + 1, INF);
		visit.resize(n + 1, false);
		e.resize(2*m + 1);
		for (int i = 1; i <= m; ++i) {
			int u, v;
			cin >> u >> v;
			add_edge(u, v,1);  //无向图,插入两次 终点和起点相反
			add_edge(v, u,1);
		}
		int s = 1;
		dfs[s] = 0;
		q.push(Node(s, 0));//记录起点到起点的最短距离为0,且只有一条
		count[s] = 1;

		while (!q.empty())
		{
			Node temp = q.top();
			q.pop();
			int pos = temp.pos;
			if (visit[pos])
				continue;
			visit[pos] = true;
			for (int i = head[pos]; i != 0; i = e[i].next) 
			{
				int y = e[i].to;
				if (dfs[y] > dfs[pos] + e[i].w)
				{
					count[y] = count[pos];
					dfs[y] = dfs[pos] + e[i].w;
					if(!visit[y])
						q.push(Node(y, dfs[y]));
				}
				else if(dfs[y] == dfs[pos] + e[i].w)
					count[y] = (count[y] + count[pos]) % 100003;
			}
		}
		for (int i = 1; i <= n; ++i)
			cout << count[i] << endl;
	}
};

int main() {
	//freopen("in.txt", "r", stdin);
	Solution s;
	s.dijskral_count();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sentry-X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值