题目信息:
回文字符串
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba"。当然,我们给你的问题不会再简单到判断一个字符串是不是回文字符串。现在要求你,给你一个字符串,可在任意位置添加字符,最少再添加几个字符,可以使这个字符串成为回文字符串。
-
输入
-
第一行给出整数N(0<N<100)
接下来的N行,每行一个字符串,每个字符串长度不超过1000.
输出
- 每行输出所需添加的最少字符数 样例输入
-
1 Ab3bd
样例输出
-
2
-
第一行给出整数N(0<N<100)
解题思路:
将字符串逆置,再拿逆置的字符串与原字符串比较,求出最长公共子序列,需要添加的字符即为字符串长度减去最长公共子序列长度。最长公共子序列求法:NYOJ 36 最长公共子序列
代码部分:
#include <stdio.h>
#include <string.h>
void Rev(char t[], char s[], int len)
{
int i;
for(i = 0; i < len; i++)
{
t[i] = s[len - 1 - i];
}
}
int dp[1005][1005];
int main()
{
int N, i, j, count, len;
char s[1005], t[1005];
scanf("%d", &N);
while(N--)
{
scanf("%s", &s[1]);
len = strlen(&s[1]);
Rev(&t[1], &s[1], len);
memset(dp, 0, sizeof(dp));
for(i = 1; i <= len; i++)
{
for(j = 1; j <= len; j++)
{
if(s[i] == t[j])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = dp[i - 1][j] > dp[i][j - 1] ? dp[i - 1][j] : dp[i][j - 1];
}
}
printf("%d\n", len - dp[len][len]);
}
return 0;
}