迷宫
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
一个由 n * m 个格子组成的迷宫,起点是(1, 1), 终点是(n, m),每次可以向上下左右四个方向任意走一步,并且有些格子是不能走动,求从起点到终点经过每个格子至多一次的走法数。
-
输入
-
第一行一个整数 T 表示有 T 组测试数据。(T <= 110)
对于每组测试数据:
第一行两个整数 n, m,表示迷宫有 n * m 个格子。(1 <= n, m <= 6, (n, m) !=(1, 1) ) 接下来 n 行,每行 m 个数。其中第 i 行第 j 个数是 0 表示第 i 行第 j 个格子可以走,否则是 1 表示这个格子不能走,输入保证起点和终点都是都是可以走的。任意两组测试数据间用一个空行分开。
输出
- 对于每组测试数据,输出一个整数 R,表示有 R 种走法。 样例输入
-
3 2 2 0 1 0 0 2 2 0 1 1 0 2 3 0 0 0 0 0 0
样例输出
-
1 0 4
-
第一行一个整数 T 表示有 T 组测试数据。(T <= 110)
深搜遍历,递归实现
#include <stdio.h>
#include <string.h>
int r=0,n,m;
bool map[7][7], book[7][7];
void DFS(int i, int j)
{
if(i < 1 || i > n || j < 1 || j > m || map[i][j] || book[i][j])
return;
if(i == n && j == m)
{
r++;
return;
}
book[i][j] = true;
DFS(i, j + 1);
DFS(i, j - 1);
DFS(i + 1, j);
DFS(i - 1, j);
book[i][j] = false;
}
int main()
{
int t,i,j;
scanf("%d",&t);
while(t--)
{
r=0;
memset(book,false,sizeof(book));
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
scanf("%d",&map[i][j]);
}
}
DFS(1,1);
printf("%d\n",r);
}
return 0;
}