Problem Description Give you a Graph,you have to start at the city
with ID zero.Input The first line is n(1<=n<=21) m(0<=m<=3) The next n line show
you the graph, each line has n integers. The jth integers means the
length to city j.if the number is -1 means there is no way. If i==j
the number must be -1.You can assume that the length will not larger
than 10000 Next m lines,each line has two integers a,b (0<=a,b< n)
means the path must visit city a first. The input end with EOF.Output For each test case,output the shorest length of the hamilton
path. If you could not find a path, output -1
经典题。
状压dp。
dp[k][p]表示走过的点状态为k,目前在p点的最短路径。
转移时用当前状态刷表,枚举下一个走到的点i,dp[k|(1 << i)][i]=min(dp[k|(1 << i)][i],dp[k][p]+map[p][i])。
初始状态dp[1][0]=0。
目标状态min{dp[(1<< n)-1][i]}。
对于限制条件,可以把每个点之前必须走到的点二进制表示bef[],然后合法的条件就是bef[i]==(k&bef[i])
其他限制条件见代码。
不能用memset,否则会MLE【我也不知道为什么】。
#include<cstdio>
#include<cstring>
int min(int x,int y)
{
return x<y?x:y;
}
int dp[2100000][25],map[25][25],bef[25];
int main()
{
int i,j,k,m,n,p,q,x,y,z,ans;
bool ok;
while (scanf("%d%d",&n,&m)==2)
{
for (i=0;i<n;i++)
bef[i]=0;
for (i=0;i<(1<<n);i++)
for (j=0;j<n;j++)
dp[i][j]=0x3f3f3f3f;
for (i=0;i<n;i++)
for (j=0;j<n;j++)
scanf("%d",&map[i][j]);
for (i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
bef[y]|=(1<<x);
}
dp[1][0]=0;
for (k=1;k<(1<<n);k++)
for (p=0;p<n;p++)
if (dp[k][p]<0x3f3f3f3f&&k&(1<<p))
for (i=0;i<n;i++)
if (map[p][i]!=-1&&(!(k&(1<<i)))&&(bef[i]==(k&bef[i])))
dp[k|(1<<i)][i]=min(dp[k|(1<<i)][i],dp[k][p]+map[p][i]);
ans=0x3f3f3f3f;
for (i=0;i<n;i++)
ans=min(ans,dp[(1<<n)-1][i]);
if (ans==0x3f3f3f3f) printf("-1\n");
else printf("%d\n",ans);
}
}