Description
A positive integer may be expressed as a sum of different prime
numbers (primes), in one way or another. Given two positive integers n
and k, you should count the number of ways to express n as a sum of k
different primes. Here, two ways are considered to be the same if they
sum up the same set of the primes. For example, 8 can be expressed as
3 + 5 and 5 + 3 but the are not distinguished.When n and k are 24 and 3 respectively, the answer is two because
there are two sets {2, 3, 19} and {2, 5, 17} whose sums are equal to
24. There are not other sets of three primes that sum up to 24. For n = 24 and k = 2, the answer is three, because there are three sets {5, 19}, {7, 17} and {11, 13}. For n = 2 and k = 1, the answer is one,
because there is only one set {2} whose sum is 2. For n = 1 and k = 1,
the answer is zero. As 1 is not a prime, you shouldn’t count {1}. For
n = 4 and k = 2, the answer is zero, because there are no sets of two
different primes whose sums are 4.Your job is to write a program that reports the number of such ways
for the given n and k.Input
The input is a sequence of datasets followed by a line containing two
zeros separated by a space. A dataset is a line containing two
positive integers n and k separated by a space. You may assume that n
≤ 1120 and k ≤ 14.Output
The output should be composed of lines, each corresponding to an input
dataset. An output line should contain one non-negative integer
indicating the number of the ways for n and k specified in the
corresponding dataset. You may assume that it is less than 231.
先找到所有质数,然后01背包。
#include<cstdio>
#include<cstring>
#define LL long long
LL dp[1200][17];
int prm[1200],tot;
bool have[1200];
int main()
{
int i,j,k,m,n,p,q,x,y,z;
for (i=2;i<=1200;i++)
{
if (!have[i]) prm[++tot]=i;
for (j=1;j<=tot&&i*prm[j]<=1200;j++)
{
have[i*prm[j]]=1;
if (i%prm[j]==0) break;
}
}
dp[0][0]=1;
for (i=1;i<=tot;i++)
for (j=1150;j>=prm[i];j--)
for (k=1;k<=15;k++)
dp[j][k]+=dp[j-prm[i]][k-1];
while (scanf("%d%d",&n,&m)&&n)
printf("%lld\n",dp[n][m]);
}