poj3809 Twenty Questions

Description Consider a closed world and a set of features that are
defined for all the objects in the world. Each feature can be answered
with “yes” or “no”. Using those features, we can identify any object
from the rest of the objects in the world. In other words, each object
can be represented as a fixed-length sequence of booleans. Any object
is different from other objects by at least one feature.

You would like to identify an object from others. For this purpose,
you can ask a series of questions to someone who knows what the object
is. Every question you can ask is about one of the features. He/she
immediately answers each question with “yes” or “no” correctly. You
can choose the next question after you get the answer to the previous
question. You kindly pay the answerer 100 yen as a tip for each
question. Because you don’t have surplus money, it is necessary to
minimize the number of questions in the worst case. You don’t know
what is the correct answer, but fortunately know all the objects in
the world. Therefore, you can plan an optimal strategy before you
start questioning.

The problem you have to solve is: given a set of boolean-encoded
objects, minimize the maximum number of questions by which every
object in the set is identifiable.

Input The input is a sequence of multiple datasets. Each dataset
begins with a line which consists of two integers, m and n: the number
of features, and the number of objects, respectively. You can assume 0
< m <= 11 and 0 < n <= 128. It is followed by n lines, each of which
corresponds to an object. Each line includes a binary string of length
m which represent the value (“yes” or “no”) of features. There are no
two identical objects.

The end of the input is indicated by a line containing two zeros.
There are at most 100 datasets.

Output For each dataset, minimize the maximum number of questions by
which every object is identifiable and output the result.

用dp[s0][s1]表示已经询问了s0这些特征,其中s1这些特征得到了肯定的答案,还需要几次才能确定物品。
枚举下一个询问的元素k,dp[s0][s1]=min{max(dp[s0+(1<< k)][s1+(1<< k)],dp[s0+(1<< k)][s1])}。
边界条件就是如果状态“s0,s1”是一个物品独有,那么还需要0次。可以枚举状态s0和物品,预处理出任何状态有几个物品满足。
总的时间复杂度是O(n * 2^m+m * 3^m)。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define DP dp[s0][s1]
#define CNT cnt[s0][s1]
const int oo=0x3f3f3f3f;
int a[140],cnt[1<<11][1<<11],dp[1<<11][1<<11],m,n,mx;
int read()
{
    char s[20];
    scanf("%s",s);
    int ret=0,i;
    for (i=0;i<m;i++)
      if (s[m-i-1]=='1')
        ret+=(1<<i);
    return ret;
}
int dfs(int s0,int s1)
{
    int i;
    if (DP>=0) return DP;
    if (CNT<=1) return 0;
    DP=oo;
    for (i=0;i<m;i++)
      if (!(s0&(1<<i)))
        DP=min(DP,max(dfs(s0+(1<<i),s1+(1<<i)),dfs(s0+(1<<i),s1))+1);
    return DP;
}
int main()
{
    int i,j,k,S;
    while (scanf("%d%d",&m,&n)&&m)
    {
        for (i=1;i<=n;i++)
          a[i]=read();
        mx=(1<<m)-1;
        memset(cnt,0,sizeof(cnt));
        memset(dp,-1,sizeof(dp));
        for (S=0;S<=mx;S++)
          for (i=1;i<=n;i++)
            cnt[S][S&a[i]]++;
        printf("%d\n",dfs(0,0));
    }
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
毕业设计,基于SpringBoot+Vue+MySQL开发的纺织品企业财务管理系统,源码+数据库+毕业论文+视频演示 在如今社会上,关于信息上面的处理,没有任何一个企业或者个人会忽视,如何让信息急速传递,并且归档储存查询,采用之前的纸张记录模式已经不符合当前使用要求了。所以,对纺织品企业财务信息管理的提升,也为了对纺织品企业财务信息进行更好的维护,纺织品企业财务管理系统的出现就变得水到渠成不可缺少。通过对纺织品企业财务管理系统的开发,不仅仅可以学以致用,让学到的知识变成成果出现,也强化了知识记忆,扩大了知识储备,是提升自我的一种很好的方法。通过具体的开发,对整个软件开发的过程熟练掌握,不论是前期的设计,还是后续的编码测试,都有了很深刻的认知。 纺织品企业财务管理系统通过MySQL数据库与Spring Boot框架进行开发,纺织品企业财务管理系统能够实现对财务人员,员工,收费信息,支出信息,薪资信息,留言信息,报销信息等信息的管理。 通过纺织品企业财务管理系统对相关信息的处理,让信息处理变的更加的系统,更加的规范,这是一个必然的结果。已经处理好的信息,不管是用来查找,还是分析,在效率上都会成倍的提高,让计算机变得更加符合生产需要,变成人们不可缺少的一种信息处理工具,实现了绿色办公,节省社会资源,为环境保护也做了力所能及的贡献。 关键字:纺织品企业财务管理系统,薪资信息,报销信息;SpringBoot
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值