We have a grid of size N N . Each cell of the grid initially
contains a zero(0) or a one(1). The parity of a cell is the number of
1s surrounding that cell. A cell is surrounded by at most 4 cells
(top, bottom, left, right). Suppose we have a grid of size 4 4: 1 0
1 0 The parity of each cell would be 1 3 1 2 1 1 1 1 2 3 2 1 0 1 0 0 2
1 2 1 0 0 0 0 0 1 0 0 For this problem, you have to change some of the
0s to 1s so that the parity of every cell becomes even. We are
interested in the minimum number of transformations of 0 to 1 that is
needed to achieve the desired requirement. Input The rst line of
input is an integer T ( T< 30) that indicates the number of test
cases. Each case starts with a positive integer N (1 N 15). Each
of the next N lines contain N integers ( 0 / 1 ) each. The integers
are separated by a single space character. Output For each case,
output the case number followed by the minimum number of
transformations required. If it’s impossible to achieve the desired
result, then output `
-1 ’ instead.
如果直接枚举每一个位置,复杂度O(2^(n^2))显然无法承受。但是如果只枚举第一行,后面就可以直接计算出来【根据上一行可以唯一地找见下一行的方案】。复杂度O(2^n * n^2)。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int oo=0x3f3f3f3f;
int a[20][20],n,ans,tem[20][20];
int cal(int i,int j)
{
int ret=0;
if (i>1) ret+=tem[i-1][j];
if (i<n) ret+=tem[i+1][j];
if (j>1) ret+=tem[i][j-1];
if (j<n) ret+=tem[i][j+1];
return ret;
}
int solve()
{
memcpy(tem,a,sizeof(a));
int i,j,ret=0;
for (i=2;i<=n;i++)
for (j=1;j<=n;j++)
if (cal(i-1,j)&1)
{
if (!tem[i][j])
{
tem[i][j]=1;
ret++;
}
else return oo;
}
for (i=1;i<=n;i++)
if (cal(n,i)&1) return oo;
return ret;
}
void dfs(int p,int now)
{
if (p==n+1)
{
ans=min(ans,now+solve());
return;
}
dfs(p+1,now);
if (!a[1][p])
{
a[1][p]=1;
dfs(p+1,now+1);
a[1][p]=0;
}
}
int main()
{
int T,K,i,j;
scanf("%d",&T);
for (K=1;K<=T;K++)
{
scanf("%d",&n);
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
scanf("%d",&a[i][j]);
ans=oo;
dfs(1,0);
printf("Case %d: ",K);
if (ans<oo) printf("%d\n",ans);
else printf("-1\n");
}
}