uva 11464 - Even Parity(3级)

D

Even Parity

Input: Standard Input

Output: Standard Output

We have a grid of size N x N. Each cell of the grid initially contains a zero(0) or a one(1). 
The parity of a cell is the number of 1s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

Suppose we have a grid of size 4 x 4: 

 

 

1

0

1

0

The parity of each cell would be

1

3

1

2

1

1

1

1

2

3

3

1

0

1

0

0

2

1

2

1

0

0

0

0

0

1

0

0

 

 

 

 

 

 

For this problem, you have to change some of the 0s to 1s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

 
Input

The first line of input is an integer T (T<30) that indicates the number of test cases. Each case starts with a positive integer N(1≤N≤15). Each of the next N lines contain N integers (0/1) each. The integers are separated by a single space character.

 

Output

For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output -1 instead.

 

Sample Input                             Output for Sample Input

 

3
3
0 0 0
0 0 0
0 0 0
3
0 0 0
1 0 0
0 0 0
3
1 1 1
1 1 1
0 0 0
 

Case 1: 0 
Case 2: 3 
Case 3: -1


Problem Setter: Sohel Hafiz,

Special Thanks: Derek Kisman, Md. Arifuzzaman Arif

 

思路:状态压缩枚举第一行的状态,然后根据前面的状态推出后面的状态。然后用初状态与目标状态比较。

 

#include<iostream>
#include<cstdio>
#include<cstring>
#define FOR(i,n) for(int i=0;i<n;++i)
using namespace std;
const int mm=17;
const int oo=1e9;
int g[mm][mm],t[mm][mm];
int n;
void check(int z,int&ans)
{ memset(t,0,sizeof(t));///目标状态
  FOR(i,n)
  if(z&(1<<i))t[0][i]=1;
  else if(g[0][i])return;///1无法变为0
  int num;
  for(int i=1;i<n;++i)FOR(j,n)
  {num=0;
    if(i>1)num+=t[i-2][j];///up
    if(j)num+=t[i-1][j-1];///left
    if(j<n-1)num+=t[i-1][j+1];
    if(num&1){t[i][j]=1;continue;}
      if(g[i][j])return;
  }
  int ret=0;
  FOR(i,n)FOR(j,n)
  if(g[i][j]^t[i][j])
    ++ret;
  ans=ans<ret?ans:ret;
}
int main()
{
  int cas;
  while(~scanf("%d",&cas))
  {
    FOR(ca,cas)
    {
      scanf("%d",&n);
      FOR(i,n)FOR(j,n)
      scanf("%d",&g[i][j]);
      int ans=oo;
      FOR(i,1<<n)
      check(i,ans);
      if(ans==oo)
      ans=-1;
      printf("Case %d: %d\n",ca+1,ans);
    }
  }
}


 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值