【HNOI2015】bzoj4008 亚瑟王

175 篇文章 0 订阅
115 篇文章 0 订阅

Description

小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。
他决定,在脱坑之前,最后再来打一盘亚瑟王。既然是最后一战,就一定要打得漂
亮。众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的。作为一个非 洲人,同时作为一个前 OIer,小 K
自然是希望最大化造成伤害的期望值。但他已 经多年没写过代码,连 Spaly都敲不对了,因此,希望你能帮帮小 K,让他感受一
下当欧洲人是怎样的体验。 本题中我们将考虑游戏的一个简化版模型。 玩家有一套卡牌,共 n张。游戏时,玩家将 n
张卡牌排列成某种顺序,排列后 将卡牌按从前往后依次编号为 1 ~ n。本题中,顺序已经确定,即为输入的顺序。 每张卡牌都有一个技能。第 i
张卡牌的技能发动概率为 pi,如果成功发动,则会对 敌方造成di点伤害。也只有通过发动技能,卡牌才能对敌方造成伤害。基于现实因
素以及小K非洲血统的考虑,pi不会为 0,也不会为 1,即 0 < pi < 1。 一局游戏一共有 r
轮。在每一轮中,系统将从第一张卡牌开始,按照顺序依次 考虑每张卡牌。在一轮中,对于依次考虑的每一张卡牌:
1如果这张卡牌在这一局游戏中已经发动过技能,则
1.1 如果这张卡牌不是最后一张,则跳过之(考虑下一张卡牌); 否则(是最后一张),结束这一轮游戏。 2否则(这张卡牌在这一局游戏中没有发动过技能),设这张卡牌为第 i 张
2.1将其以 pi的概率发动技能。
2.2如果技能发动,则对敌方造成 di点伤害,并结束这一轮。
2.3如果这张卡牌已经是最后一张(即 i 等于n),则结束这一轮;否则, 考虑下一张卡牌。 请帮助小 K 求出这一套卡牌在一局游戏中能造成的伤害的期望值。 Input

输入文件的第一行包含一个整数 T,代表测试数据组数。 接下来一共 T 组数据。 每组数据的第一行包含两个用空格分开的整数
n和r,分别代表卡牌的张数和 游戏的轮数。 接下来 n行,每行包含一个实数和一个整数,由空格隔开,描述一张卡牌。第 i 行的两个数为
pi和 di,分别代表第 i 张卡牌技能发动的概率(实数)和技能发动 造成的伤害(整数)。保证 pi最多包含 4位小数,且为一个合法的概率。
Output

对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的
伤害的期望值。对于每一行输出,只有当你的输出和标准答案的相对误差不超过
10^-8时——即|a-o|/a<=10-8时(其中a是标准答案,o是输出),你的输出才会被判为正确。 建议输出10 位小数。

对每个技能分别考虑,求出它被使用的概率 fi 。可以发现,这个概率是和他被轮到的次数有关的,而轮到的次数是跟之前技能的发动情况有关的。记 dp[i][j] 表示前 i 个技能,其中有j个发动的概率。那么

dp[i][j]=dp[i1][j](1pi)rj+dp[i1][j1][1(1pi)r(j1)]

求出 dp 数组之后,就可以算出来
fi=j=0i1fp[i1][j](1pi)rj

然后用概率算期望。

#include<cstdio>
#include<algorithm>
#define LD double
LD p[230],dp[230][230],pow[230][230],f[230];
int n,m,v[230];
double rd()
{
    double x;
    scanf("%lf",&x);
    return x;
}
void prt(double x)
{
    printf("%.10f\n",x);
}
void solve()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
        p[i]=rd(),scanf("%d",&v[i]);
    for (int i=1;i<=n;i++)
    {
        pow[i][0]=1;
        for (int j=1;j<=m||j<=n;j++) pow[i][j]=pow[i][j-1]*(1-p[i]);
    }
    dp[0][0]=1;
    for (int i=1;i<=n;i++)
        for (int j=0;j<=i&&j<=m;j++)
            dp[i][j]=dp[i-1][j]*pow[i][m-j]+dp[i-1][j-1]*(1-pow[i][m-j+1]);
    for (int i=1;i<=n;i++)
    {
        f[i]=0;
        for (int j=0;j<i&&j<=m;j++)
            f[i]+=dp[i-1][j]*(1-pow[i][m-j]);
    }
    for (int i=1;i<=n;i++)
        for (int j=0;j<=i&&j<=m;j++)
            dp[i][j]=0;
    LD ans=0;
    for (int i=1;i<=n;i++) ans+=f[i]*v[i];
    prt(ans);
}
int main()
{
    int T;
    scanf("%d",&T);
    while (T--) solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值