【SHOI&SXOI2017】bzoj4871 摧毁“树状图”

177 篇文章 1 订阅
175 篇文章 0 订阅

考虑关于边的树形dp,对于有向边 e:u>v ,维护

fe=max{degv1,fe1+degv2}(e1:v>w,wu)ge=max{fe,fe1+fe2+degv3}(e1:v>w,e2:v>x,w,x,u)he=max{ge,he1}(e1:v>w,wu)

分别表示从 v 往下走得到的最多连通块,从下面上到v再下去得到的最多连通块, v 的子树可能得到的最多连通块。注意,这里的连通块个数都不计算u所在的连通块。
具体求解可以采用记忆化搜索。
一条路径的情况,可以用 he+1 更新答案。
接下来考虑两条路径的情况。
如果两条路径不相交,可以更新答案的有
he1+he2(e1:u>v,e2:v>u)he1+he2+1(e1:u>v,e2:u>w,vw)

如果两条路径在某点相交,可以更新答案的有
fe1+fe2+fe3+degu3(e1:u>v,e2:u>w,e3:u>x,v,w,x)fe1+fe2+fe3+fe4+degu4(e1:u>v,e2:u>w,e3:u>x,e4:u>y,v,w,x,y)

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=200010,oo=100000000;
int fir[maxn],ne[maxn],to[maxn],deg[maxn],
f[maxn],g[maxn],h[maxn],vis[maxn],
n,X;
int rd()
{
    int x=0;
    char c=getchar();
    while (c<'0'||c>'9') c=getchar();
    while (c>='0'&&c<='9')
    {
        x=x*10+c-'0';
        c=getchar();
    }
    return x;
}
void add(int num,int u,int v)
{
    ne[num]=fir[u];
    fir[u]=num;
    to[num]=v;
}
void dp(int e)
{
    if (vis[e]) return;
    int u=to[e],f1=-oo,f2=-oo;
    vis[e]=1;
    h[e]=-oo;
    for (int i=fir[to[e]];i;i=ne[i])
        if (i!=(e^1))
        {
            dp(i);
            h[e]=max(h[e],g[i]);
            if (f[i]>=f1)
            {
                f2=f1;
                f1=f[i];
            }
            else f2=max(f2,f[i]);
        }
    f[e]=max(deg[u]-1,f1+deg[u]-2);
    g[e]=max(f[e],f1+f2+deg[u]-3);
    h[e]=max(h[e],g[e]);
}
void solve()
{
    int u,v,f1,f2,f3,f4,h1,h2,ans=0;
    n=rd();
    if (X) rd(),rd();
    if (X==2) rd(),rd();
    for (int i=1;i<=n;i++) fir[i]=deg[i]=0;
    for (int i=1;i<n;i++)
    {
        u=rd();
        v=rd();
        deg[u]++;
        deg[v]++;
        add(i<<1,u,v);
        add(i<<1|1,v,u);
        vis[i<<1]=vis[i<<1|1]=0;
    }
    for (int i=1;i<=n;i++)
    {
        f1=f2=f3=f4=h1=h2=-oo;
        for (int j=fir[i];j;j=ne[j])
        {
            dp(j);
            ans=max(ans,h[j]+1);
            if (vis[j^1]) ans=max(ans,h[j]+h[j^1]);
            if (f[j]>=f1)
            {
                f4=f3;
                f3=f2;
                f2=f1;
                f1=f[j];
            }
            else
            {
                if (f[j]>=f2)
                {
                    f4=f3;
                    f3=f2;
                    f2=f[j];
                }
                else
                {
                    if (f[j]>=f3)
                    {
                        f4=f3;
                        f3=f[j];
                    }
                    else f4=max(f4,f[j]);
                }
            }
            if (h[j]>=h1)
            {
                h2=h1;
                h1=h[j];
            }
            else h2=max(h2,h[j]);
        }
        ans=max(ans,h1+h2+1);
        ans=max(ans,f1+f2+f3+deg[i]-3);
        ans=max(ans,f1+f2+f3+f4+deg[i]-4);
    }
    printf("%d\n",ans);
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T;
    T=rd();
    X=rd();
    while (T--) solve();
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值