考虑关于边的树形dp,对于有向边
e:u−>v
,维护
fe=max{degv−1,fe1+degv−2}(e1:v−>w,w≠u)ge=max{fe,fe1+fe2+degv−3}(e1:v−>w,e2:v−>x,w,x,u互不相等)he=max{ge,he1}(e1:v−>w,w≠u)
分别表示从 v 往下走得到的最多连通块,从下面上到
具体求解可以采用记忆化搜索。
一条路径的情况,可以用 he+1 更新答案。
接下来考虑两条路径的情况。
如果两条路径不相交,可以更新答案的有
he1+he2(e1:u−>v,e2:v−>u)he1+he2+1(e1:u−>v,e2:u−>w,v≠w)
如果两条路径在某点相交,可以更新答案的有
fe1+fe2+fe3+degu−3(e1:u−>v,e2:u−>w,e3:u−>x,v,w,x互不相等)fe1+fe2+fe3+fe4+degu−4(e1:u−>v,e2:u−>w,e3:u−>x,e4:u−>y,v,w,x,y互不相等)
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=200010,oo=100000000;
int fir[maxn],ne[maxn],to[maxn],deg[maxn],
f[maxn],g[maxn],h[maxn],vis[maxn],
n,X;
int rd()
{
int x=0;
char c=getchar();
while (c<'0'||c>'9') c=getchar();
while (c>='0'&&c<='9')
{
x=x*10+c-'0';
c=getchar();
}
return x;
}
void add(int num,int u,int v)
{
ne[num]=fir[u];
fir[u]=num;
to[num]=v;
}
void dp(int e)
{
if (vis[e]) return;
int u=to[e],f1=-oo,f2=-oo;
vis[e]=1;
h[e]=-oo;
for (int i=fir[to[e]];i;i=ne[i])
if (i!=(e^1))
{
dp(i);
h[e]=max(h[e],g[i]);
if (f[i]>=f1)
{
f2=f1;
f1=f[i];
}
else f2=max(f2,f[i]);
}
f[e]=max(deg[u]-1,f1+deg[u]-2);
g[e]=max(f[e],f1+f2+deg[u]-3);
h[e]=max(h[e],g[e]);
}
void solve()
{
int u,v,f1,f2,f3,f4,h1,h2,ans=0;
n=rd();
if (X) rd(),rd();
if (X==2) rd(),rd();
for (int i=1;i<=n;i++) fir[i]=deg[i]=0;
for (int i=1;i<n;i++)
{
u=rd();
v=rd();
deg[u]++;
deg[v]++;
add(i<<1,u,v);
add(i<<1|1,v,u);
vis[i<<1]=vis[i<<1|1]=0;
}
for (int i=1;i<=n;i++)
{
f1=f2=f3=f4=h1=h2=-oo;
for (int j=fir[i];j;j=ne[j])
{
dp(j);
ans=max(ans,h[j]+1);
if (vis[j^1]) ans=max(ans,h[j]+h[j^1]);
if (f[j]>=f1)
{
f4=f3;
f3=f2;
f2=f1;
f1=f[j];
}
else
{
if (f[j]>=f2)
{
f4=f3;
f3=f2;
f2=f[j];
}
else
{
if (f[j]>=f3)
{
f4=f3;
f3=f[j];
}
else f4=max(f4,f[j]);
}
}
if (h[j]>=h1)
{
h2=h1;
h1=h[j];
}
else h2=max(h2,h[j]);
}
ans=max(ans,h1+h2+1);
ans=max(ans,f1+f2+f3+deg[i]-3);
ans=max(ans,f1+f2+f3+f4+deg[i]-4);
}
printf("%d\n",ans);
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
T=rd();
X=rd();
while (T--) solve();
}