目录
背景引入:乡村振兴与技术变革
乡村振兴战略自党的十九大提出以来,已成为我国全面建设社会主义现代化国家的重要任务。它不仅关系到农村经济的发展,更影响着整个国家的均衡发展和社会稳定。农业强不强、农村美不美、农民富不富,直接决定了全面小康社会的成色和社会主义现代化的质量。在 2025 年这个关键节点,随着技术的飞速发展,创新技术对乡村振兴的推动作用愈发关键。
近年来,数字化、智能化成为农业高技术研究与产业化开发的主要方向。以人工智能(AI)、低代码为代表的先进技术,正逐渐渗透到乡村振兴的各个领域,为解决 “三农” 问题提供了新的思路和方法。它们不仅能提高农业生产效率、优化农村产业结构,还能改善农村的公共服务和社会治理水平,为乡村振兴注入强大动力。
低代码与 AI 技术基础科普
低代码开发揭秘
低代码开发,作为一种新兴的软件开发方法,正逐渐改变着传统的开发模式。它允许开发者通过可视化的用户界面,利用拖放组件和模型驱动的逻辑,快速生成应用程序,而无需编写大量的代码 。这种开发方式大大降低了技术门槛,使得非专业开发人员也能参与到应用开发中,从而加速了开发过程,减少了开发周期和成本。
低代码开发平台通常具有以下特点:可视化拖拽界面,开发者可以通过简单的拖放操作,将各种组件(如按钮、文本框、表格等)放置在界面上,快速搭建应用的前端界面;丰富的预制模板和组件库,提供了大量常用的功能模块和界面元素,开发者可以直接使用,无需从头开始编写代码;自动化的业务逻辑生成,通过配置和简单的脚本编写,即可实现复杂的业务逻辑,减少了手动编码的工作量;多平台支持,生成的应用程序可以在多个平台上运行,包括 Web、移动端等。
以 JNPF 低代码开发平台为例,它采用了先进的技术架构,支持多种数据源接入,包括常见的数据库如 SQL Server、MySQL 等,以及第三方 API 接口。其可视化设计器功能强大,提供了丰富的组件库,涵盖了表单、报表、图表等各种常用组件。通过简单的拖拽和配置,即可快速创建出功能完善的企业应用。例如,在创建一个员工信息管理系统时,只需从组件库中拖曳出表格组件用于展示员工信息,添加表单组件用于员工信息的录入和编辑,再通过配置数据来源和业务逻辑,即可快速完成系统的开发。而且,JNPF 平台还支持多端适配,生成的应用可以在 PC 端、移动端等不同设备上流畅运行,满足了企业多样化的使用场景需求。
AI 建模在乡村场景的潜力
AI 建模,即利用人工智能技术和数据建立模型的过程,通过收集和分析大量的数据,运用机器学习、深度学习等算法,让系统自动从数据中学习和提取特征,从而建立起能够解决复杂问题的模型 。在乡村振兴的背景下,AI 建模具有巨大的应用潜力。
在农业生产方面,AI 建模可以帮助农民实现精准农业。通过对土壤湿度、养分含量、气象数据、作物生长状况等多源数据的收集和分析,建立作物生长模型和病虫害预测模型。例如,潍柴雷沃开发的 “灌溉”“养分”“病虫害”“作物生长” 等 AI 大模型,通过田间的各种传感器实时采集数据,经过模型分析后,能够生成精准的补水、施肥、病虫害防治等方案。这不仅提高了农作物的产量和质量,还减少了资源的浪费和环境污染。
在乡村治理方面,AI 建模可以用于智能监控和预警。通过对村庄的视频监控数据、人口流动数据等进行分析,建立异常行为检测模型和治安预警模型。江苏电信金湖分公司借助 AI 技术,实现对地方乡镇、村居重点路段、重要区域、复杂场所全时段监控,利用 AI 对图像文本的深度学习与精准识别,实现 “AI + 视控” 服务全覆盖,能够及时发现并处理异常人员聚集、车辆乱停乱放等问题,提升了乡村治理的效率和水平 。此外,AI 建模还可以应用于农产品市场预测、农村电商推荐系统等领域,为乡村经济发展提供有力支持。
项目实战:低代码 + AI 助力乡村振兴
项目背景与目标
在乡村振兴的众多实践中,智慧农业成为了提升农业生产效率、促进农民增收的重要方向。以某乡村智慧农业项目为例,该乡村长期面临着农业生产效率低下、市场信息不对称、农产品销售渠道单一等问题。传统的农业生产方式依赖人工经验,难以应对复杂多变的自然环境和市场需求。农民在种植决策、病虫害防治、农产品销售等环节缺乏科学的指导和有效的支持,导致农产品产量不稳定、质量参差不齐,难以实现经济效益的最大化。
该智慧农业项目旨在利用低代码和 AI 技术,构建一个集数据采集、生产管理、销售管理于一体的智慧农业平台,实现农业生产的智能化、精细化管理,拓宽农产品销售渠道,提高农民收入。通过实时监测和分析农业生产数据,为农民提供精准的种植建议和病虫害预警,优化生产过程,降低生产成本。同时,通过搭建电商平台和引入智能营销手段,帮助农民更好地对接市场,提高农产品的销售价格和市场竞争力。
技术选型与架构设计
在技术选型上,选择了 JNPF 低代码开发平台。JNPF 低代码开发平台具有强大的可视化设计器、丰富的组件库和灵活的工作流引擎,能够快速搭建出各种业务应用。它支持多种数据源接入,包括常见的数据库如 MySQL、SQL Server 等,还能与第三方系统进行集成,满足智慧农业项目对数据管理和系统集成的需求。同时,该平台具有良好的扩展性和稳定性,能够适应项目未来的发展和变化。
对于 AI 建模部分,选用了 Python 语言和相关的机器学习框架,如 TensorFlow、PyTorch 等。Python 语言具有丰富的库和工具,便于进行数据处理、模型训练和优化。这些机器学习框架提供了强大的算法和模型,能够满足作物生长预测、病虫害预警等功能的实现。例如,使用卷积神经网络(CNN)进行病虫害图像识别,利用循环神经网络(RNN)对作物生长数据进行时间序列分析,预测作物的生长趋势。
整体技术架构采用分层设计,包括数据采集层、数据存储层、业务逻辑层和用户界面层。数据采集层通过传感器、物联网设备等采集土壤湿度、温度、光照、气象等环境数据以及作物生长数据;数据存储层将采集到的数据存储在 MySQL 数据库和 Hadoop 分布式文件系统(HDFS)中,分别用于结构化数据和非结构化数据的存储;业务逻辑层利用低代码平台和 AI 算法进行数据处理、分析和业务逻辑实现,如生成种植建议、病虫害预警等;用户界面层通过低代码平台搭建的 Web 应用和移动端应用,为农民和管理人员提供直观、便捷的操作界面,实现数据的实时查看和业务的远程管理。各层之间通过接口进行交互,保证系统的高效运行和可维护性。
低代码实现过程
在低代码平台上,首先进行数据采集模块的搭建。通过拖放表单组件,创建土壤数据采集表单、气象数据采集表单、作物生长数据采集表单等。设置表单字段,如土壤湿度、土壤酸碱度、气温、降水量、作物高度、叶片数量等,并配置数据验证规则,确保采集数据的准确性和完整性。利用低代码平台的数据源配置功能,将表单数据与 MySQL 数据库进行连接,实现数据的实时存储。
接着搭建生产管理模块。通过流程设计器,创建种植计划制定流程、灌溉施肥管理流程、病虫害防治流程等。例如,在种植计划制定流程中,根据不同作物的生长周期和季节特点,设置种植时间、种植密度、施肥方案等环节,并通过任务分配功能将任务分配给相应的农户。在灌溉施肥管理流程中,根据传感器采集的数据和作物生长需求,自动生成灌溉和施肥指令,实现精准灌溉和精准施肥。
销售管理模块同样通过低代码平台实现。搭建农产品展示页面,展示农产品的品种、产地、产量、价格等信息,并支持图片、视频等多媒体展示。创建订单管理系统,实现订单的接收、处理、发货、退款等功能。通过与第三方支付平台的集成,实现在线支付功能,方便农民和消费者进行交易。同时,利用低代码平台的报表功能,生成销售报表,分析销售数据,为销售决策提供支持。
AI 建模融入
在作物生长预测方面,收集多年的作物生长数据、环境数据以及气象数据,对数据进行清洗和预处理,去除异常值和缺失值,并进行数据归一化处理。利用预处理后的数据,训练长短期记忆网络(LSTM)模型。LSTM 模型能够有效地处理时间序列数据,学习作物生长的规律和趋势。通过不断调整模型参数和优化模型结构,提高模型的预测精度。训练完成后,将实时采集的环境数据和作物生长数据输入到模型中,模型即可预测作物的生长周期、产量等信息,为农民提前安排生产和销售提供依据。
在病虫害预警方面,利用安装在田间的摄像头和传感器,实时采集作物的图像和数据。通过图像识别技术,利用卷积神经网络(CNN)对作物图像进行分析,识别作物是否受到病虫害侵袭,并判断病虫害的类型和严重程度。同时,结合气象数据和作物生长数据,利用机器学习算法建立病虫害预测模型。当模型预测到可能发生病虫害时,及时向农民发送预警信息,并提供相应的防治措施建议,帮助农民及时采取措施,减少病虫害对作物的损害。
项目成果展示
通过该智慧农业项目的实施,取得了显著的成果。在生产效率方面,实现了精准灌溉和精准施肥,水资源利用率提高了 30%,肥料利用率提高了 25%,劳动生产率提高了 40%。通过智能设备和自动化系统的应用,减少了人工投入,降低了劳动强度,提高了生产效率。
在成本控制方面,通过优化生产过程和精准管理,生产成本降低了 20%。减少了资源浪费,降低了农资采购成本和设备维护成本。同时,通过病虫害预警和精准防治,减少了病虫害造成的损失,进一步降低了生产成本。
在收入增长方面,农产品产量提高了 25%,销售价格提高了 15%,农民收入显著增加。通过智慧农业平台的数据分析和市场预测功能,农民能够根据市场需求调整种植结构和生产计划,生产出更符合市场需求的农产品,提高了农产品的市场竞争力和销售价格。同时,通过电商平台和智能营销手段,拓宽了销售渠道,增加了农产品的销售量,从而实现了农民收入的大幅增长。
小白接单指南:从技术到商务
提升技术能力
对于想要承接政府乡村振兴项目的小白来说,提升技术能力是首要任务。在低代码和 AI 技术领域,有许多优质的学习资源可供利用。在线课程平台如 Coursera、Udemy 上有丰富的低代码开发和 AI 相关课程,涵盖从基础概念到高级应用的各个层面。例如,Coursera 上的 “低代码开发基础与实践” 课程,通过理论讲解和实际案例演示,帮助学习者快速掌握低代码开发的核心技能;Udemy 上的 “AI for Beginners” 课程则以通俗易懂的方式介绍 AI 的基本原理和应用场景,适合零基础的初学者。
同时,官方文档也是深入学习的重要途径。以 JNPF 低代码开发平台为例,其官方文档详细介绍了平台的功能特性、使用方法和开发案例,学习者可以通过阅读文档,深入了解平台的各项功能,并结合实际操作进行练习。此外,还可以参加线下的培训课程和技术研讨会,与专业的讲师和同行进行面对面的交流和学习,获取最新的技术信息和实践经验。
在学习过程中,一定要注重实践。可以尝试参与一些开源项目或小型的实际项目,将所学知识应用到实际开发中。例如,在 GitHub 上搜索低代码和 AI 相关的开源项目,参与项目的开发和维护,通过与其他开发者的协作,提升自己的技术水平和团队协作能力。也可以自己搭建一些简单的乡村振兴相关的应用,如农产品销售管理系统、农村土地资源管理系统等,通过实践不断积累经验,提高自己的技术能力。
了解政府需求与项目流程
政府乡村振兴项目通常具有明确的目标和需求,了解这些需求是成功承接项目的关键。政府在乡村振兴项目中,往往关注农业产业升级、农村基础设施建设、农村生态环境保护、农村公共服务提升等方面。在农业产业升级方面,可能会涉及到智慧农业、农产品深加工、农村电商等项目;在农村基础设施建设方面,包括农村道路交通、水利设施、电力和通讯设施的建设和改善;农村生态环境保护则涵盖农村环境治理、生态修复与保护、农业面源污染防治等内容;农村公共服务提升包括优化农村教育资源配置、提升医疗卫生服务水平、建设文化体育设施等。
了解项目申报、投标、实施流程也至关重要。项目申报阶段,需要密切关注政府发布的项目申报通知,按照要求准备详细的申报材料,包括项目可行性研究报告、项目实施方案、预算编制等。在投标阶段,要认真研究招标文件,制定合理的投标策略,突出自身的技术优势和项目实施能力。例如,在编写投标文件时,详细介绍团队在低代码和 AI 技术方面的应用经验,以及针对该乡村振兴项目的创新解决方案。项目实施阶段,要严格按照合同要求和项目计划推进项目,确保项目质量和进度。建立有效的沟通机制,及时与政府部门和相关利益方进行沟通,解决项目实施过程中出现的问题。
组建团队与合作
乡村振兴项目涉及多个领域和专业,组建一个多元化的团队至关重要。团队成员应包括低代码开发工程师、AI 算法工程师、农业专家、项目管理人员等。低代码开发工程师负责利用低代码平台搭建项目的应用系统,实现业务流程的数字化;AI 算法工程师则专注于开发和应用 AI 模型,为项目提供智能化的支持,如农产品产量预测、病虫害预警等;农业专家能够提供专业的农业知识和经验,确保项目的实施符合农业生产的实际需求;项目管理人员负责项目的整体规划、协调和管理,确保项目按时、按质完成。
可以通过招聘、合作等方式组建团队。在招聘时,注重考察候选人的专业技能、项目经验和团队协作能力。例如,招聘低代码开发工程师时,要求其具备一定的低代码平台开发经验,熟悉常用的低代码开发工具和技术;招聘 AI 算法工程师时,考察其在机器学习、深度学习等领域的研究成果和实践经验。除了内部组建团队,还可以与其他企业或机构进行合作,整合各方资源,共同完成项目。例如,与农业科技企业合作,获取先进的农业技术和设备;与高校或科研机构合作,借助其科研力量解决项目中的技术难题。
商务谈判与合同签订
在商务谈判中,掌握一定的技巧能够帮助争取更有利的合作条件。要充分了解对方的需求和痛点,在谈判中展示自己的解决方案能够为对方带来的价值。例如,在与政府部门谈判时,强调低代码和 AI 技术在提高乡村振兴项目效率、降低成本、提升服务质量等方面的优势。积极倾听对方的意见和建议,寻求双方的利益平衡点,实现互利共赢。在谈判过程中,保持良好的沟通态度和专业形象,增强对方的信任感。
签订合同前,要仔细审查合同条款,确保合同内容明确、合理、合法。关注合同中的项目范围、交付时间、付款方式、违约责任等关键条款。明确项目的具体需求和功能要求,避免在项目实施过程中出现需求变更和争议;合理确定交付时间,确保有足够的时间完成项目开发和测试;明确付款方式和付款节点,保障自身的经济利益;清晰界定违约责任,防范可能出现的风险。如果对合同条款有疑问或不满意的地方,及时与对方沟通协商,进行修改和完善。在签订合同后,要严格按照合同约定履行自己的义务,确保项目的顺利进行。
未来展望:技术持续创新与乡村发展
低代码和 AI 技术在乡村振兴中的应用,只是数字技术助力农村发展的开端。未来,随着技术的不断进步,低代码开发平台将更加智能化、便捷化,AI 模型将更加精准、高效。例如,低代码平台可能会实现自然语言编程,用户只需通过语音或文字描述需求,平台就能自动生成应用程序;AI 模型将能够融合更多的数据源,实现更全面、更深入的数据分析,为乡村振兴提供更具前瞻性的决策支持。
从乡村发展前景来看,这些技术的持续应用将推动农村产业进一步升级,实现农业生产的智能化、农村治理的现代化和农村生活的数字化。智慧农业将向更深层次发展,实现农业生产的全链条智能化管理,从种子培育、种植管理到农产品加工、销售,都将实现智能化运作。农村电商将借助 AI 技术实现精准营销,根据消费者的偏好和需求,推荐合适的农产品,提高农产品的销售效率和市场份额。农村公共服务也将更加智能化、个性化,为农民提供更加便捷、高效的服务。
同时,低代码和 AI 技术的应用还将吸引更多的人才回流农村,激发农村的创新活力和发展潜力。年轻人可以利用这些技术,在农村开展创业活动,发展新兴产业,为农村经济注入新的活力。这些技术也将促进城乡融合发展,缩小城乡差距,让农村成为人们向往的美好家园。在未来的乡村振兴道路上,低代码和 AI 技术必将发挥更加重要的作用,引领乡村走向更加美好的明天。