- 博客(5)
- 资源 (1)
- 收藏
- 关注
原创 keras 中locallyConnected1D操作
keras.layers.LocallyConnected1D(filters, kernel_size, strides=1, padding='valid', data_format=None, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kerne...
2019-08-07 03:31:27 1018
原创 The difference between Softmax and Sigmoid
Sigmoid: f(xi)=11+e(−xi)f({x}_{i}) = \frac{1}{1+{e}^{(-{x}_{i})}}f(xi)=1+e(−xi)1Softmax: f(xi)=exi∑j=0kexjf({x}_{i}) = \frac{e^{{x}_{i}}}{\sum_{j=0}^{k}{e^{{x}_{j}}}}f(xi)=∑j=0kexjexisigmoid...
2019-08-06 04:21:02 182
原创 LUNA 数据集 体像素坐标系 和 世界坐标之间的转换
体像素坐标系和世界坐标系的转换LUNA数据集是CT扫描的得到的,由于扫描机器位置等各种原因,直接得到的数据,其原点坐标是各不相同的,同时其单位为mm,但是为了比较不同数据之间的关系,需要将坐标统一到世界坐标系中,因此要经过一些变换:主要包含两个部分,一个是原点对齐,第二个是坐标轴长度的统一。世界坐标 / 1 = (体素坐标 - 体素原点坐标)/ 体素间隔。这里的体素间隔,我理解的是在世界坐...
2019-07-19 22:28:51 1414
原创 caffe 代码大揭秘
啊,起这么唬人的名字确实不符合做科研应该有的心态,但是作为一个菜鸟,让我“揭秘”一下吧,如果某一天我成了大牛,我一定会低调的。看caffe的源代码的时候,在网上看到了很多不错的资料,我觉得知乎上甘宇飞的回答对我帮助最大,但是有些地方对我来说还是太简洁了,希望把我的经验分享出来,也做个记录,代码肯定还是要自己看的,看得时候拿这个做一个参考还是可以的,废话不多说,把我看的流程展示如下: 就是按照cnn
2015-08-26 21:30:23 4133 3
原创 Structural Sparse Tracking CVPR2015 原理解析
Structural Sparse Tracking CVPR2015 原理解析首先介绍一下常用tracking方法的分类,主要分为两种类型: discriminative approach 鉴别性方法:将tracking化为一个二分类的问题,通过训练分类器,区分目标和背景,从而实现跟踪 generative approach 生成性方法:将tracking当做一个匹配的过程,生成一个
2015-07-16 09:22:22 1436
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人