poj 2886 Who Gets the Most Candies?

N 个小孩围成一圈,他们被顺时针编号为 1 到 N。每个小孩手中有一个卡片,上面有一个非 0 的数字,游戏从第 K 个小孩开始,他告诉其他小孩他卡片上的数字并离开这个圈,他卡片上的数字 A 表明了下一个离开的小孩,如果 A 是大于 0 的,则下个离开的是左手边第 A 个,如果是小于 0 的,则是右手边的第 -A 个小孩。游戏将直到所有小孩都离开,在游戏中,第 p 个离开的小孩将得到 F(p) 个糖果,F(p) 是 p 的约数的个数,问谁将得到最多的糖果。输出最幸运的小孩的名字和他可以得到的糖果。

//以上的翻译是从网上找的

首先呢,第P个小孩将得到P的约数个糖果,这就要引入一个数学名词,反素数,反素数的性质就是,比他小的数的约数个数都没他多,那么我们只要在1到n的范围内找到最大的反素数就能知道最多的糖果数,这个其实用反证法就能证明,假设p是1到n内的最大反素数,那么,如果在p到n内还有数的约数比p多,那么显然p就不能算是最大的反素数了,所以我们就先把50万以内的反素数提前打表,他们的约数也提前打好表,这样的话,就不用所有人都出来后才得出最终结果了。

假设p是1到n内最大的反素数,我们只需模拟p次这个出队过程了,然后有一个需要注意的地方是,下一个人的位置怎么求,这里面有一种是相对位置,还有一种是最初位置,很显然,由于数据量太大,不能通过简单的模拟来实现最初位置和相对位置的转化,这里面,能直接求出来的是相对位置,假设一个人的位置是k,手上卡片的数字是+m,那么下一个人的位置应该是p+m,但是由于他的出队,这个相对位置就要减1了,是p+m-1,但是如果一个人的卡片是-m,此时他的退出就对下一个人的相对位置没有影响了,因为下一个人的位置应该是p-m,在这个人之前,就没有影响了。然后需要注意的是可能会出现负数和0,这就要适当的处理一下了。

然后就是相对位置与最初位置的转换,这里用到了线段树,线段树所附加的信息是该区间还有多少人,每踢掉一个人,区间值变化一次,然后就相当于一个动态的队列了,中间踢掉某个人,整个序列的长度减1,每个人的位置发生了变化,然后再踢相对位置为p的人,只要从头数到第p个人,踢掉就行了。线段树的话,我们先从叶子节点看,踢掉一个人,就相当于这个叶子节点的值就变成0了,然后从1到n,数叶子节点为1的个数,到p的时候把踢掉该位置的人就行了,这样就好理解点了,然后根据点更新到段就能实现快速的插入了。


/*
ID: sdj22251
PROG: subset
LANG: C++
*/
#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <cmath>
#include <ctime>
#define LOCA
#define MAXN 500005
#define INF 100000000
#define eps 1e-7
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
const int antiprime[] = {1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720,45360,50400,55440,83160,110880,166320,221760,277200,332640,498960,554400};
const int factor[] = {1,2,3,4,6,8,9,10,12,16,18,20,24,30,32,36,40,48,60,64,72,80,84,90,96,100,108,120,128,144,160,168,180,192,200,216};
struct node
{
    int left, right, mid;
    int cnt;
}tree[4 * MAXN];
struct child
{
    char name[25];
    int v;
}p[MAXN];
void make_tree(int s, int e, int C)
{
    tree[C].left = s;
    tree[C].right = e;
    tree[C].mid = (s + e) / 2;
    tree[C].cnt = tree[C].right - tree[C].left + 1;
    if(s == e) return;
    make_tree(s, tree[C].mid, L(C));
    make_tree(tree[C].mid + 1, e, R(C));
}
int update(int C, int k)
{
    tree[C].cnt--;
    if(tree[C].left == tree[C].right)
    {
        return tree[C].left;
    }
    if(tree[L(C)].cnt >= k) return update(L(C), k);
    else return update(R(C), k - tree[L(C)].cnt);
}
int main()
{
#ifdef LOCAL
    freopen("d:/data.in","r",stdin);
    freopen("d:/data.out","w",stdout);
#endif
    int n, k, i;
    while(scanf("%d%d", &n, &k) != EOF)
    {
        for(i = 1; i <= n; i++)
        {
            scanf("%s%d", p[i].name, &p[i].v);
        }
        make_tree(1, n, 1);
        int cnt = 0;
        while(antiprime[cnt] <= n) cnt++;
        cnt--;
        int pos = 0;
        p[pos].v = 0;
        for(i = 0; i < antiprime[cnt]; i++)
        {
            if(p[pos].v > 0)
            {
                k = ((k + p[pos].v - 2) % tree[1].cnt + tree[1].cnt) % tree[1].cnt + 1;
            }
            else
            {
                k = ((k + p[pos].v - 1) % tree[1].cnt + tree[1].cnt) % tree[1].cnt + 1;
            }
            pos = update(1, k);
        }
        printf("%s %d\n", p[pos].name, factor[cnt]);
    }
    return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sdj222555/article/details/6878651
文章标签: tree c struct 游戏 360
上一篇POJ 2828 Buy Tickets
下一篇SPOJ 5 The Next Palindrome
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭