poj 3042 Grazing on the Run(区间DP,三维DP)

简单区间DP学完了,自己独立做道区间DP的题目,居然最大值计算错了,导致n遍wrong answer

庆幸的是这次除了这点错误外,状态转移是完全正确的,还得继续做,。。。

1、http://poj.org/problem?id=3042

2、题目大意:

有n块草坪,知道每块草坪的位置(我们可以看做是x轴上的一点),Bessie位于L位置,他可以向左右两个方向去吃草坪,假设吃草坪的时间不计,路上的时间是每走一个单位,时间+1,每块草坪都有一个staleness值,这个值恰好等于Bessie到达的时间,现在要求的是Bessie将所有草坪吃完,所有草坪的staleness值最小是多少,例如样例

4 10
1
9
11
19
 

Bessie can follow this route:
* start at position 10 at time 0
* move to position 9, arriving at time 1
* move to position 11, arriving at time 3
* move to position 19, arriving at time 11
* move to position 1, arriving at time 29

所以所有草坪最小的staleness值就是1+3+11+29=44

3、思路分析

这是一道区间DP的问题,我们用dp[i][j][0]表示从i-j区间都吃完,最后停留在i位置,所有草坪的最小的staleness值

dp[i][j][1]表示i-j区间都吃完,最后停留在j位置上的最小值

那么这两个状态的转移方程就是

           dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(a[i+1]-a[i])*(delay+b[i]));
            dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(a[j]-a[i])*(delay+b[i]));
            dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(a[j]-a[j-1])*(delay+b[j]));
            dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(a[j]-a[i])*(delay+b[j]));

对于这道题目来说每个草坪的初始staleness值假设都是1,那么Bessie所在的位置的staleness值就是0,我们用一个数组b[]来记录

这道题目也可以不用这样做,直接delay=n-(j-i),就不用加上b[],网上有人的代码是这么做的,尚不太理解

4、AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 10005
#define INF 1000000009
int a[N],b[N];
int dp[N][N][2];
int cmp(int a,int b)
{
    return a<b;
}
int binarySearch(int l,int r,int key)
{
    while(l<=r)
    {
        int m=(l+r)>>1;
        if(a[m]==key)
            return m;
        if(key<a[m])
            r=m-1;
        else
            l=m+1;
    }
    return 0;
}
void DP(int p,int n)
{
    for(int i=1;i<=n;i++)
    b[i]=1;
    b[p]=0;
    for(int i=0; i<=n; i++)
    {
        for(int j=0; j<=n; j++)
        {
            dp[i][j][0]=INF;
            dp[i][j][1]=INF;
        }
    }
    dp[p][p][0]=dp[p][p][1]=0;
    for(int i=p; i>=1; i--)
    {
        for(int j=p; j<=n; j++)
        {
            if(i==j)
                continue;
            int delay=n-(j-i+1);
           // printf("&%d %d %d\n",i,j,delay);
            dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(a[i+1]-a[i])*(delay+b[i]));
            dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(a[j]-a[i])*(delay+b[i]));
            dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(a[j]-a[j-1])*(delay+b[j]));
            dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(a[j]-a[i])*(delay+b[j]));
        }
    }
}
int main()
{
    int n,l;
    scanf("%d%d",&n,&l);
    for(int i=1; i<=n; i++)
    {
        scanf("%d",&a[i]);
    }
    a[n+1]=l;
    sort(a+1,a+n+2,cmp);
    int ans=binarySearch(1,n+1,l);
    //printf("ans=%d\n",ans);
    DP(ans,n+1);

    int ret=min(dp[1][n+1][0],dp[1][n+1][1]);
    printf("%d\n",ret);
    return 0;
}


不用b[]数组的AC代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 10005
#define INF 1<<30
int a[N],b[N];
int dp[N][N][2];
int cmp(int a,int b)
{
    return a<b;
}
int binarySearch(int l,int r,int key)
{
    while(l<=r)
    {
        int m=(l+r)>>1;
        if(a[m]==key)
            return m;
        if(key<a[m])
            r=m-1;
        else
            l=m+1;
    }
    return 0;
}
void DP(int p,int n)
{
    for(int i=1;i<=n;i++)
    b[i]=1;
    b[p]=0;
    for(int i=0; i<=n; i++)
    {
        for(int j=0; j<=n; j++)
        {
            dp[i][j][0]=INF;
            dp[i][j][1]=INF;
        }
    }
    dp[p][p][0]=dp[p][p][1]=0;
    for(int i=p; i>=1; i--)
    {
        for(int j=p; j<=n; j++)
        {
            if(i==j)
                continue;
                //如果delay这样定义,就不用b[]
            int delay=n-j+i;
           // printf("&%d %d %d\n",i,j,delay);
            dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][0]+(a[i+1]-a[i])*(delay));
            dp[i][j][0]=min(dp[i][j][0],dp[i+1][j][1]+(a[j]-a[i])*(delay));
            dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][1]+(a[j]-a[j-1])*(delay));
            dp[i][j][1]=min(dp[i][j][1],dp[i][j-1][0]+(a[j]-a[i])*(delay));
        }
    }
}
int main()
{
    int n,l;
    scanf("%d%d",&n,&l);
    for(int i=1; i<=n; i++)
    {
        scanf("%d",&a[i]);
    }
    a[n+1]=l;
    sort(a+1,a+n+2,cmp);
    int ans=binarySearch(1,n+1,l);
    //printf("ans=%d\n",ans);
    DP(ans,n+1);

    int ret=min(dp[1][n+1][0],dp[1][n+1][1]);
    printf("%d\n",ret);
    return 0;
}


 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值