LeetCode 53. 最大子序和

LeetCode 53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解法:

一:暴力求解

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        tmp = nums[0]
        max_ = tmp
        n = len(nums)
        for i in range(1,n):
            # 当当前序列加上此时的元素的值大于tmp的值,说明最大序列和可能出现在后续序列中,记录此时的最大值
            if tmp + nums[i]>nums[i]:
                max_ = max(max_, tmp+nums[i])
                tmp = tmp + nums[i]
            else:
            #当tmp(当前和)小于下一个元素时,当前最长序列到此为止。以该元素为起点继续找最大子序列,
            # 并记录此时的最大值
                max_ = max(max_, tmp, tmp+nums[i], nums[i])
                tmp = nums[i]
        return max_

二:分治

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        n = len(nums)
        #递归终止条件
        if n == 1:
            return nums[0]
        else:
            #递归计算左半边最大子序和
            max_left = self.maxSubArray(nums[0:len(nums) // 2])
            #递归计算右半边最大子序和
            max_right = self.maxSubArray(nums[len(nums) // 2:len(nums)])
        
        #计算中间的最大子序和,从右到左计算左边的最大子序和,从左到右计算右边的最大子序和,再相加
        max_l = nums[len(nums) // 2 - 1]
        tmp = 0
        for i in range(len(nums) // 2 - 1, -1, -1):
            tmp += nums[i]
            max_l = max(tmp, max_l)
        max_r = nums[len(nums) // 2]
        tmp = 0
        for i in range(len(nums) // 2, len(nums)):
            tmp += nums[i]
            max_r = max(tmp, max_r)
        #返回三个中的最大值
        return max(max_right,max_left,max_l+max_r)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值