生成对抗网络(Generative Adversarial
csdn-WJW
这个作者很懒,什么都没留下…
展开
-
论文解读:DeLiGAN: Generative Adversarial Networks for Diverse and Limited Data
前言:DeLiGAN是计算机视觉顶会CVPR2017发表的一篇论文,本文将结合Python源代码学习DeLiGAN中的核心内容。DeLiGAN最大的贡献就是将生成对抗网络(GANs)的输入潜空间编码为混合模型(高斯混合模型),从而使得生成对抗网络(GANs)在数量有限但具有多样性的训练数据上表现出较好的性能;同时,在初始得分(Inception Score)的基础上提出了改进版初始得分(modif...翻译 2018-10-27 20:54:48 · 1703 阅读 · 0 评论 -
InfoGAN:Interpretable Representation Learning by Information Maximizing GANs论文解读
概述:InfoGAN是国际神经信息处理系统大会NIPS 2016上的论文,作者来自加州大学伯克利分校和OpenAI团队的研究人员,被OpenAI称为当年的五大突破之一。针对传统生成对抗网络以高度混杂的模式使用随机噪声,随机噪声的每一个维度不能显式地表示真实数据空间下的属性或特征的问题,论文所提出的InfoGAN以无监督方式学习隐空间下非混杂方式真实特征表示(disentangled repre...翻译 2018-11-09 11:52:43 · 2428 阅读 · 1 评论 -
Yan Goodfellow 在生成对抗网络(GANs)论文中提到的比喻 “the Helvetica Scenario” 的解释及其来龙去脉
the Helvetica Scenario:海奥维提卡情景Youtube 上的视频参考[2][1] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in neural information processing systems. 2014: 2672-2680....原创 2019-03-20 19:01:15 · 3555 阅读 · 4 评论 -
ICLR 2019 Oral 论文 BigGAN 解读及源代码拆解
简称:【BigGANs】全称:《Large Scale GAN Training for High Fidelity Natural Image Synthesis》来源:ICLR 2019 OralBigGANs 的 Big 主要是两方面:(1)更大的模型(模型参数的数量是先前最好工作的 2~4 倍)(2)更大批量(批量大小是先前最好工作的 8 倍)硬件:128 ~ 512 个核的 ...原创 2019-08-01 22:30:57 · 8078 阅读 · 0 评论