Description
给定线性序集中n个元素和一个整数k,n<=2000000,1<=k<=n,要求找出这n个元素中第k小的数。
Input
第一行有两个正整数n,k.
接下来是n个整数(0<=ai<=1e9)。
Output
输出第k小的数
Sample Input
6 3
1 3 5 2 4 6
Sample Output
3
一开始我是想利用优先队列的大顶堆,存储当前遇到的最小的k个数,时间复杂度是O(nlogk)果断tle
本题需要用时间复杂度为O(n)的算法解决
然后我就去学习了一下线性时间选择算法…
本题做法是先将整个数组每5个分成一份,最后如果不足5个也分成一份
然后将每组进行升序排序,中间的那个数作为每组的中位数 如果不足5个且为偶数就选择中间两个的较大值
将每组的中位数依次从start所在的位置向后进行互换,将所有组的中位数都移动到前面
再求出每组的中位数中的中位数 以这个中位数对当前数组进行划分,中位数前的数全部比中位数小,中位数后的数比中位数大
如果所有组的中位数中的中位数所在的位置距离当前start的长度大于当前的k,那么说明结果在左边
反之结果在右边 注意在进行下一次递归时要将k减去当前的长度 因为如果往右边递归则说明已经选择上了左边
中间我所有的排序都偷了个懒用的sort…如果想用c写的话 冒泡其实也可以
本题数据量挺大的 大于1e5最好用scanf不要用cin
代码
#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 2000010;
int num[M];
// 返回每组中位数中的中位数的所在位置
int Quick_sort(int start, int end, int val) {
int idx, left = start + 1, right = end;
for (int i = start; i <= end; ++i) {
if (num[i] == val) {
idx = i;
swap(num[start], num[idx]);
break;
}
}
while (left < right) {
while (num[left] < val && left < right) ++left;
while (num[right] > val && left < right) --right;
if (left < right) swap(num[left], num[right]);
}
for (int i = start; i <= end; ++i) {
if (num[i] > num[start]) {
swap(num[i - 1], num[start]);
return i - 1;
}
}
}
// 返回[start, end]中第k小的数
int Solve(int start, int end, int k) {
if (end - start < 75) {
sort(num + start, num + end + 1);
return num[start + k - 1];
}
int cnt = 0;
// 每5个元素分为1组 进行排序后 将每组的中位数依次与num[start + cnt++]进行互换 也就是本次递归中的开始及往后的位置
for (int i = start; i <= end; i += 5) {
if (i + 4 <= end) {
sort(num + i, num + i + 5);
swap(num[start + cnt++], num[i + 2]);
}
else {
sort(num + i, num + end + 1);
swap(num[start + cnt++], num[(i + end + 1) >> 1]);
}
}
int mid = Solve(start, start + cnt - 1, (cnt >> 1) + 1);
int midd = Quick_sort(start, end, mid);
int len = midd - start + 1;
// 向左或者向右递归
if (len >= k) return Solve(start, midd, k);
else return Solve(midd + 1, end, k - len);
}
int main() {
int n, k;
scanf("%d%d", &n, &k);
for (int i = 0; i < n; ++i) scanf("%d", &num[i]);
printf("%d", Solve(0, n - 1, k));
return 0;
}