Keras入门之三:Hello Keras on CNN with MNIST 卷积网络应用在手写数字识别

上一次说到用卷积网络实现图像处理。

这一次的笔记说的是卷积神经网络的正经事儿——使用CNN来实现手写数字的识别。

之前已经说过,CNN的权重带来了各种图像处理的效果,这些都可以作为图像特征来使用。因此,将标记好的训练集导入构建的CNN网络中,后面再增加全连接网络最终分类输出,就达到了识别的目的。

在我的笔记本上运行的时候,记录了一些中间结果:

160s/epoch  3ms/step
loss: 0.0350 - acc: 0.9893 - val_loss: 0.0294 - val_acc: 0.9908
Test score: 0.029372483089374873
Test accuracy: 0.9908
可以看出来,卷积处理的效果比全连接网络要好,在图像识别上使用卷积神经网络还是很有优势的。
全连接网络1:784-784*2-10  epochs=12识别率约88%
全连接网络2:784- 3个【784*2】--5个【784】---10 
            epochs=12(87%),=30(92%),=100(94%)
可见卷积网络比单纯增加全连接的复杂度好得多。

from PIL import Image
import numpy as np
np.random.seed(1337)  # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
import matplotlib.pyplot as plt  # 显示图片

# 全局变量
batch_size = 128
nb_classes = 10   # 手写数字一共有10类,可以生成10维的OneHot
epochs = 1
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size
kernel_size = (3, 3)

# 数据集获取 mnist 数据集的介绍可以参考 https://blog.csdn.net/simple_the_best/article/details/75267863
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# print(K.image_dim_ordering()) # 'th'

# 根据不同的backend定下不同的格式
if K.image_dim_ordering() == 'th':
    X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
    X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
    X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255    # 规格化到 0-1
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# 转换为one_hot类型
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

#构建模型
model = Sequential()
""" 
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], 
                        border_mode='same', 
                        input_shape=input_shape)) 
"""
model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]),
                        padding='same',
                        input_shape=input_shape)) # 卷积层1
model.add(Activation('relu')) #激活层

model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]))) #卷积层2
model.add(Activation('relu')) #激活层

model.add(MaxPooling2D(pool_size=pool_size)) #池化层
model.add(Dropout(0.25)) #神经元随机失活

model.add(Flatten()) #拉成一维数据
model.add(Dense(128)) #全连接层1
model.add(Activation('relu')) #激活层
model.add(Dropout(0.5)) #随机失活

model.add(Dense(nb_classes)) #全连接层2  作为输出层
model.add(Activation('softmax')) #Softmax评分

#编译模型
model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])
#训练模型
model.fit(X_train, Y_train, batch_size=batch_size, epochs=epochs,
          verbose=1, validation_data=(X_test, Y_test))
#评估模型
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

#保存
model.save('model_test_Keras_02(CNN-3-mnist).h5')

识别的结果

下面我们来看一下中间结果。在结果上可以看到各种滤波的效果,说明卷积神经网络比以前的图像处理的优势在于自动训练了各层的权重,通过权重调整实现了以前研究人员开发的各种滤波器效果。

要注意,获取第二层的输出时, 其输入应该是第一层输出的结果。不过下面写的代码我感觉比较土,应该有更好的方法能够实现调用。请懂行的朋友留言指导一下,谢谢。26日的时候我重新更新了一下代码,似乎是找到了一个更加合适的方法来获取某一层的输出(或输入),运行结果也证明更加方便一些


'''
CNN网络的加载、中间结果的获取
'''
from PIL import Image
import numpy as np
np.random.seed(1337)  # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.models import load_model, Model
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
import matplotlib.pyplot as plt  # 显示图片


'''将0到1的浮点数转换到0-255的图像值'''
def deprocess_image(x):
    if K.image_data_format() == 'channels_first':
        x = x.transpose(1, 2, 3, 0)
    elif K.image_data_format() == 'channels_last':
        x = x.transpose(3, 1, 2, 0)
    x *= 255.
    x = np.clip(x, 0, 255).astype('uint8')
    return x

# 全局变量
batch_size = 128
nb_classes = 10   # 手写数字一共有10类,可以生成10维的OneHot
epochs = 1
# input image dimensions
img_rows, img_cols = 28, 28
# number of convolutional filters to use
nb_filters = 32
# size of pooling area for max pooling
pool_size = (2, 2)
# convolution kernel size
kernel_size = (3, 3)

# 数据集获取 mnist 数据集的介绍可以参考 https://blog.csdn.net/simple_the_best/article/details/75267863
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# print(K.image_dim_ordering()) # 'th'

# 根据不同的backend定下不同的格式
if K.image_dim_ordering() == 'th':
    X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
    X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
    X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255    # 规格化到 0-1
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

# 转换为one_hot类型
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

#载入模型
model = load_model('E:/PythonWorks/TestDemos/models/model_test_Keras_02(CNN-3-mnist).h5')
#编译模型  不编译是不能使用的
model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])

'''使用载入的模型显示一组识别结果的图片'''
retImg = []
curIndex = 0
img = np.empty((1, img_rows,img_cols, 1),dtype="float32") # 'channels_last' for TF
for i in range(0,1000):
    img[0,:,:,:] = X_test[i]
    ret = model.predict(img)    # ret.shape = (1, 28, 28, 32)
    retValue = np.argmax(ret, axis = 1)[0]
    if retValue==curIndex:
        retImg.append(X_test[i])
        curIndex += 1

    if len(retImg)==10:
        break

fig = plt.figure()
for i in range(0,2):
    for j in range(0,5):
        ax0 = fig.add_subplot(2,5,i*5+j+1)
        t1 = retImg[i*5+j]
        temp = np.rollaxis(255*retImg[i*5+j], 2, 0) #retImg[i*5+j]
        showImg = Image.fromarray(temp[0])
        ax0.imshow(showImg, cmap ='gray')
        ax0.axis('off')
        ax0.set_title(str(i*5+j))
plt.show()


'''获取中间结果,并展示出中间结果的图片'''
'''下面这种方法比较繁琐, 不建议使用,仅仅表示这样可以执行成功'''
'''
#定义回调函数
get_1_layer_output = K.function([model.layers[0].input, K.learning_phase()],  [model.layers[0].output])
pic_len = 1
p_32 = get_1_layer_output([X_train[1:1+pic_len], 0])[0]      #获取第1层的输出

#  将第一层的输出作为第二层的输入,即可得到第二层的输出。
get_2_layer_output = K.function([model.layers[2].input, K.learning_phase()],  [model.layers[2].output])
p_32 = get_2_layer_output([p_32, 0])[0]                      #获取第2层的输出

image_array = deprocess_image(p_32)
print('image_array.shape=',image_array.shape)

img = np.empty((1, img_rows,img_cols, 1),dtype="float32") # 'channels_last' for TF
img = np.rollaxis(image_array,3,0)
#ret = model.predict(img)    # ret.shape = (1, 28, 28, 32)
ret = img[0] * 255
print('ret.shape = ', ret.shape)
'''

'''下面的方法才是获取中间结果的正解'''
#取某一层的输出为输出新建为model,采用函数模型
# 如果想要获取某一层的输入输出,最好给每一层命名,否则按照index是很难找到的
dense1_layer_model = Model(inputs=model.input, outputs=model.get_layer(index=1).output)
#以这个model的预测值作为输出
img = np.empty((1, img_rows,img_cols, 1),dtype="float32") # 'channels_last' for TF
img[0,:,:,:] = X_test[0]

dense1_output = dense1_layer_model.predict(img)
image_array = deprocess_image(dense1_output)
img = np.rollaxis(image_array,3,0)
ret = img[0] * 255

print("shape of img", img.shape)
print("shape of ret", ret.shape)

fig = plt.figure()
for i in range(0,8):
    for j in range(0,4):
        ax0 = fig.add_subplot(8,4,i*4+j+1)
        temp = ret[i*4+j]
        showImg = Image.fromarray(temp)
        ax0.imshow(showImg, cmap ='gray')
        ax0.axis('off')
        #ax0.set_title(str(i*4+j))
plt.show()



 

第一段代码要感谢 marsjhao  博文见 https://blog.csdn.net/marsjhao/article/details/68490105


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于基于卷积神经网络的mnist手写数字识别,我们可以使用以下步骤: 1. 加载数据集:使用Python中的Keras库加载MNIST数据集。 2. 数据预处理:将像素值缩放到0到1之间,并将标签进行one-hot编码。 3. 构建模型:使用Keras库构建卷积神经网络模型。 4. 编译模型:指定损失函数、优化器和评估指标。 5. 训练模型:使用训练集训练模型,并在验证集上进行验证。 6. 评估模型:使用测试集评估模型的性能。 7. 使用模型:使用训练好的模型对新的手写数字图像进行分类。 以下是一个简单的基于卷积神经网络的mnist手写数字识别的代码示例: ```python from keras.datasets import mnist from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense # 加载数据集 (train_images, train_labels), (test_images, test_labels) = mnist.load_data() # 数据预处理 train_images = train_images.reshape((60000, 28, 28, 1)) train_images = train_images.astype('float32') / 255 test_images = test_images.reshape((10000, 28, 28, 1)) test_images = test_images.astype('float32') / 255 train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) # 构建模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) # 编译模型 model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_data=(test_images, test_labels)) # 评估模型 test_loss, test_acc = model.evaluate(test_images, test_labels) print('Test accuracy:', test_acc) # 使用模型 predictions = model.predict(test_images) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值