题干:
今天,书店老板有一家店打算试营业 customers.length 分钟。每分钟都有一些顾客(customers[i])会进入书店,所有这些顾客都会在那一分钟结束后离开。
在某些时候,书店老板会生气。 如果书店老板在第 i 分钟生气,那么 grumpy[i] = 1,否则 grumpy[i] = 0。 当书店老板生气时,那一分钟的顾客就会不满意,不生气则他们是满意的。
书店老板知道一个秘密技巧,能抑制自己的情绪,可以让自己连续 X 分钟不生气,但却只能使用一次。
请你返回这一天营业下来,最多有多少客户能够感到满意的数量。
示例:
输入:customers = [1,0,1,2,1,1,7,5], grumpy = [0,1,0,1,0,1,0,1], X = 3
输出:16
解释:
书店老板在最后 3 分钟保持冷静。
感到满意的最大客户数量 = 1 + 1 + 1 + 1 + 7 + 5 = 16.
核心思想:
移动窗口法,客户满意的数量=确定满意的+使用技巧导致满意的,问题得本质在于求大区间给定范围的最大值,此处采用移动窗口法比较合适,时间复杂度O(n)
示例代码:
class Solution {
public int maxSatisfied(int[] customers, int[] grumpy, int X) {
int geneSum = 0; //确定满意的客户总数
int winSum = 0; //当前窗口中由技巧使客户满意的总数
int winMax = 0; //由技巧使客户满意的最大值
int len = customers.length;
for(int i = 0; i < len; i++) {
int angry = grumpy[i];
int val = customers[i];
if(angry == 0) { //累加确定满意的客户总数
geneSum += val;
}
if(i >= X) { //移动窗口,每次要考虑去掉首位值
int beforeAngry = grumpy[i - X];
if(beforeAngry != 0) {
winSum -= customers[i - X];
}
}
if(angry != 0) { //移动窗口,考虑添加尾值
winSum += val;
winMax = Math.max(winSum, winMax);
}
}
return geneSum + winMax;
}
}