前言
在hive中支持的存储数数据格式主要有:TEXTFILE,SEQUENCEFILE,ORC,PARQUET。
列式存储和行式存储
在当今的数据处理大致可分为两大类,联机事务处理OLTP(on-line-transaction processing)和联机分析处理OLAP(on-line Analytical processing)
OLTP是传统关系型数据库的主要 应用,用来执行 一些基本的日常的事务处理,比如:数据库的增删改查等。而OLAP则是分布式数据库的主要应用它对实时性 要求不高,但是处理量 巨大。
- 行存储的特点
查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快 - 列存储的特点
因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量;每个字段的数据类型一定是相同的,列式存储可以针对性的设计更好的设计压缩算法。
TEXTFILE和SEQUENCEFILE的存储格式都是基于行存储的;
OPC和PARQUET是基于列式存储的。
TextFile格式
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。可结合Gzip,Bzip2使用,但使用Gzip这种方法,hive不会对数据进行切分,从而无法对数据进行并行操作。
Ocr格式
Ocr(Optimized Row columnar)是Hive0.11版引入的新的存储格式。
每个Orc文件由1个或多个stripe组成,每个stripe250MB大小,这个Stripe实际相当于RowGroup概念,不过大小由4MB-》250MB,这样应该能提升顺序读的吞吐率。每个Stripe里有三部分组成,分别为Index Data,Row Data,Stripe Footer;
- Index Data : 一个轻量级的index,默认是每隔1W行做一个索引。这样做的索引应该只是记录某行的各字段在Row Data中的offset。
- Row Data : 存的是具体数据,先取部分行,然后对这些行按列进行存储。对每个列进行编码,分成多个Stream来存储。
- Stripe Footer:存的是各个Stream的类型,长度等信息。
每个文件有一个File Footer,这里存的是每个Stripe的行数,每个Column的数据类型信息等;每个文件的尾部是一个PostScript,这里面记录了整个文件的压缩类型以及FileFooter的长度信息等。在读取文件时,会seek到文件尾部读PostScript,从里面解析到File Footer的长度,在读File Footer从里面解析到各个Strpe信息,在读各个Stripe,即从后往前读。
其实该方式是行列结合的方式。不是完全是行存储
Parquet格式
Parquet是面向分析型业务的列式存储格式,由Twitter和cloudera合作开发。
Parquet文件是以二进制方式进行存储的,所以是不可以直接读取的,文件中包括该文件的数据和元数据,因此Parquet格式文件是自解析的。
通常情况下,在存储Parquet数据的时候会按照Block大小设置行组的大小,由于一般情况下每一个Mapper任务处理数据的最小单位是一个block,这样可以把每一个行组由一个Mapper任务处理,增大任务执行并行度。Parquet文件的格式如下图所示:
上图展示了一个parquet文件的内容,一个文件中可以存储多个行组,文件的首位都是该文件的Magic Code,用于校验它是否是一个Parquet文件,Footer length 记录了文件元数据的大小,通过该值和文件长度可以计算出元数据的偏移量,文件的元数据中包括每一个行组的元数据信息和该文件存储数据的Schema信息。除了文件中每一行组的元数据,每一页的开始都会存储该页的元数据,在Parquet中,有三种类型的页:数据页,字典页和索引页。数据页用于存储当前行组中该列的值,字典页存储该列值的编码字典,每一个列快中最多包含一个字典页,索引页用来存储当前行组下该列的索引,目前parquet
中还不支持索引页。