I - Odd Gnome
这是一个签到题,很简单,按照题目要求模拟一下就行,有时可以结合样例想一下
#include <bits/stdc++.h>
#define fi first
#define se second
#define eps 1e-8
#define ll long long
#define ull unsigned long long
#define pb push_back
#define maxn 5000010
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define P pair<ll, ll>
#define pi acos(-1)
#define lson l,mid,rt*2
#define rson mid+1,r,rt*2+1
#define lowbit(x) (x&(-x))
#define SZ(x) ((int)(x).size())
#define met(a,x) memset(a,x,sizeof(a))
#define openin(x) freopen(x, "r", stdin)
#define openout(x) freopen(x, "w",stdout)
#define rep(i,a,b) for(ll i = a;i <= b;i++)
#define bep(i,a,b) for(ll i = a;i >= b;i--)
using namespace std;
ll mod = 998244353;
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * b / gcd(a, b);
}
ll qpow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int main()
{
int n,i,m,a[10010];
scanf("%d",&n);
while(n--)
{
scanf("%d",&m);
for(i=1; i<=m; i++)
{
scanf("%d",&a[i]);
}
for(i=2; i<m; i++)
{
if(a[i]>a[i-1]&&a[i]>a[i+1]&&a[i-1]<a[i+1])
{
printf("%d\n",i);
}
if(a[i]<a[i-1]&&a[i]<a[i+1]&&a[i-1]<a[i+1])
{
printf("%d\n",i);
}
}
}
return 0;
}
F - GlitchBot
每一步输入三个指令,安指令行走,从0,0走到x,y,中间有一步是错误的,找到那一步,并把它改正输出,这个题的数据比较小,直接暴力修改每一步就行
#include <bits/stdc++.h>
#define fi first
#define se second
#define eps 1e-8
#define ll long long
#define ull unsigned long long
#define pb push_back
#define maxn 5000010
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define P pair<ll, ll>
#define pi acos(-1)
#define lson l,mid,rt*2
#define rson mid+1,r,rt*2+1
#define lowbit(x) (x&(-x))
#define SZ(x) ((int)(x).size())
#define met(a,x) memset(a,x,sizeof(a))
#define openin(x) freopen(x, "r", stdin)
#define openout(x) freopen(x, "w",stdout)
#define rep(i,a,b) for(ll i = a;i <= b;i++)
#define bep(i,a,b) for(ll i = a;i >= b;i--)
using namespace std;
ll mod = 998244353;
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * b / gcd(a, b);
}
ll qpow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int dx[]={0,1,0,-1};
int dy[]={1,0,-1,0};
char s[100];
int a[10000];
int n,x,y;
int bianli()
{
int l=0;
int x1=0;
int y1=0;
for(int i=0;i<n;i++)
{
if(a[i]==0)
{
x1=x1+dx[l];
y1=y1+dy[l];
}
else if(a[i]==1)
{
l=(l+3)%4;
}
else if(a[i]==2)
{
l=(l+1)%4;
}
}
return x1==x&&y1==y;
}
int main()
{
int i;
int f=0;
scanf("%d%d%d",&x,&y,&n);
for(i=0; i<n; i++)
{
scanf("%s",s);
if(strcmp(s,"Forward")==0)
{
a[i]=0;
}
else if(strcmp(s,"Left")==0)
{
a[i]=1;
}
else if(strcmp(s,"Right")==0)
{
a[i]=2;
}
}
for(i=0; i<n; i++)
{
int t=3;
if(f==1)
break;
while(t--)
{
a[i]=(a[i]+1)%3;
if(bianli())
{
printf("%d ",i+1);
if(a[i]==0)
{
printf("Forward\n");
}
else if(a[i]==1)
{
printf("Left\n");
}
else if(a[i]==2)
{
printf("Right\n");
}
f=1;
break;
}
}
}
return 0;
}
B - Bumped!
题意:有n种面额的货币,如果能保证所以金额,用贪心思想算出的货币张数(每次减先大面额的货币)和 正确的货币张数是相同的,就是规范的(输出canonical),如果贪心算出的货币张数比正确算出的多,那就是不规范的(输出non-canonical)
转移方程 dp[i] = d[i - b[j] ] + 1;(dp[i]代表剩余金额为i时已经拥有的张数,b[j]代表第j张钱的面额)
#include <bits/stdc++.h>
#define fi first
#define se second
#define eps 1e-8
#define ll long long
#define ull unsigned long long
#define pb push_back
#define maxn 5000010
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define P pair<ll, ll>
#define pi acos(-1)
#define lson l,mid,rt*2
#define rson mid+1,r,rt*2+1
#define lowbit(x) (x&(-x))
#define SZ(x) ((int)(x).size())
#define met(a,x) memset(a,x,sizeof(a))
#define openin(x) freopen(x, "r", stdin)
#define openout(x) freopen(x, "w",stdout)
#define rep(i,a,b) for(ll i = a;i <= b;i++)
#define bep(i,a,b) for(ll i = a;i >= b;i--)
using namespace std;
ll mod = 998244353;
ll gcd(ll a, ll b)
{
return b == 0 ? a : gcd(b, a % b);
}
ll lcm(ll a, ll b)
{
return a * b / gcd(a, b);
}
ll qpow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int a[2000000],b[2000000];
int dp[2000000];
int main()
{
int n,i,j;
memset(dp,inf,sizeof(dp));
scanf("%d",&n);
for(i=1; i<=n; i++)
{
scanf("%d",&a[i]);
}
dp[0]=0;
for(i=1; i<=n; i++)
{
for(j=0; j<=2000000; j++)
{
if(j>=a[i])
{
dp[j]=min(dp[j],dp[j-a[i]]+1);
}
}
}
for(i=0; i<=2000000; i++)
{
for(j=1; j<=n; j++)
{
if(i>=a[j])
{
b[i]=b[i-a[j]]+1;
}
}
}
int f=0;
for(i=0; i<2000000; i++)
{
if(b[i]!=dp[i])
{
f=1;
break;
}
}
if(f==1)
{
printf("non-canonical\n");
}
else
{
printf("canonical\n");
}
return 0;
}