Python
文章平均质量分 71
SDUTyangkun
这个作者很懒,什么都没留下…
展开
-
关于numpy中Array乘法的记录
在机器学习中遇到的一点有关python的小问题a = np.array([[1,2,3],[4,5,6],[7,8,9]])b = np.array([1,2,3])print a*b print a+bprint b*aprint b+ac=np.dot(a, b)print cprint np.shape(c)d = np.dot(b, a)print dprint原创 2017-06-21 14:35:44 · 662 阅读 · 0 评论 -
局部加权线性回归
1.基本概念 欠拟合:由于样本数据过少过着其他因素,拟合模型在数据预报时会造成偏差。如图中的左和中为求出的回归方程,然而在x的取值和真实差别很大,这个情况叫做欠拟合。 过拟合:简单理解就是训练样本的得到的输出和期望输出基本一致,但是测试样本输出和测试样本的期望输出相差却很大 。 一般情况下: 对于特征集过小的情况,称之为欠拟合(underfitting) 对于特征集过大的情况,原创 2017-07-29 10:42:24 · 2504 阅读 · 0 评论 -
Numpy 数组装置和轴对换和通用函数:快速的元素级数组函数
# #3、数组装置和轴对换arr = np.arange(15).reshape((3,5))print arrprint "数组转置的两种方法:"print arr.transpose()print arr.T #在矩阵计算时,经常需要用到该操作,如利用np.dot()计算x^Txprint "x^Tx内积"print np.dot(arr.T,arr)#--4、通用函数原创 2017-07-27 14:41:46 · 1007 阅读 · 0 评论 -
Numpy 将条件逻辑表述为数组运算
#5将条件逻辑表述为数组运算--------------xarr = np.arange(1.1,1.6,0.1)yarr = np.arange(2.1,2.6,0.1)cond = np.array([True, False, True,True,False])print xarrprint yarrprint cond#假设我们要根据cond的值选取xarr和yarr的值:当c原创 2017-07-27 15:23:00 · 831 阅读 · 0 评论 -
Numpy 数学和统计方法
#6数学和统计方法------------------------------arr = np.random.randn(5,4)print arrprint np.mean(arr)#求平均值 mean和sum这类可以接受axis参数(0,1)#用于统计该轴上的统计值,最终结果是一个一维数组print np.mean(arr,axis = 0)#一列的均值print np.mean(原创 2017-07-27 16:17:17 · 848 阅读 · 0 评论 -
Numpy 用于布尔型数组的方法 唯一化以及其他集合逻辑
#7用于布尔型数组的方法-----------------------arr = np.random.randn(10)print arrprint (arr>0).sum()#正值的数量#any,和all方法对布尔型数组非常有用 any测试bool数组里面是否有true#all测试是否都是true#所有非零元素都可以当做truebools = np.array([True,Fals原创 2017-07-27 17:15:53 · 901 阅读 · 0 评论 -
简单线性回归
1. 介绍:回归(regression) Y变量为连续数值型(continuous numerical variable) 如:房价,人数,降雨量 分类(Classification): Y变量为类别型(categorical variable) 如:颜色类别,电脑品牌,有无信誉原创 2017-06-18 17:37:42 · 876 阅读 · 0 评论 -
scikit-learn数据预处理fit_transform()与transform()的区别(转)
二者的功能都是对数据进行某种统一处理(比如标准化~N(0,1),将数据缩放(映射)到某个固定区间,归一化,正则化等)fit_transform(partData)对部分数据先拟合fit,找到该part的整体指标,如均值、方差、最大值最小值等等(根据具体转换的目的),然后对该partData进行转换transform,从而实现数据的标准化、归一化等等。。根据对之前部分fit的整体指标,对剩余的数据(原创 2017-08-22 21:30:08 · 4038 阅读 · 1 评论