tensorflow
SDUTyangkun
这个作者很懒,什么都没留下…
展开
-
TensorFlow 1.0 重大功能及改善
TensorFlow 1.0 重大功能及改善 XLA(实验版):初始版本的XLA,针对TensorFlow图(graph)的专用编译器,面向CPU和GPU。 TensorFlow Debugger(tfdbg):命令行界面和API。 添加了新的python 3 docker图像。 使pip包兼容pypi。TensorFlow现在可以通过 [pip install tensorflo转载 2017-09-27 10:49:49 · 517 阅读 · 0 评论 -
ubantu 下pip的卸载
最近下载jupyter notebook老是下载不下来,原因是pip版本太低, 于是升级pip但是版本还是原来的版本,查看方法是pip -V,于是卸载了pip,命令是 sudo apt-get remove python-pip,版本于是就成最新的了,嘎嘎嘎原创 2017-09-25 20:06:53 · 9512 阅读 · 0 评论 -
sofxmax sigmod
import tensorflow as tf #此时,权值构成了一个矩阵,而非向量,每个“特征权值列"对应一个输出类别 W = tf.Variable(tf.zeros([4, 3]), name = "Weights") #每个偏置也是如此,每个偏置对应一个输出类 b = tf.Variable(tf.zeros([3]), name = "bias") def inference(X):原创 2017-10-11 21:53:36 · 625 阅读 · 0 评论 -
tensorflow 非线性回归
#encoding:utf-8 #encoding:utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # 神经层函数参数, 输入值, 输入的大小, 输出的大小,激励函数(默认为空) def add_layer(inputs, in_size, out_size, activation_fu原创 2017-10-12 20:58:05 · 1488 阅读 · 0 评论 -
线性回归
import tensorflow as tf#初始化变量和模型参数, 定义训练闭环中运算 W = tf.Variable(tf.zeros([2, 1]), name = "weights") b = tf.Variable(0.0, name = "bias")#计算推断模型在数据X上的输出, 并将结果返回 def inference(X): return tf.matmul(X, W)原创 2017-10-12 21:02:27 · 294 阅读 · 0 评论 -
对数几率回归
从kaggle下载的泰坦尼克数据集import tensorflow as tf#对数几率回归参数和变量的初始化 W = tf.Variable(tf.zeros([5, 1]), name="weights") b = tf.Variable(0.0, name="bias")#之前的推断现在用于值的合并 def combine_inputs(X): return tf.matmul(X,原创 2017-10-12 21:04:59 · 638 阅读 · 0 评论 -
softmax分类
鸢尾花数据集。在数据集包含三个特征值及其三个可能的输出类(不同的鸢尾花),因此权值矩阵的维数应为4*3(下载链接)import tensorflow as tf#此时,权值构成了一个矩阵,而非向量,每个“特征权值列"对应一个输出类别 W = tf.Variable(tf.zeros([4, 3]), name = "Weights") #每个偏置也是如此,每个偏置对应一个输出类 b = tf.Var原创 2017-10-12 21:38:49 · 806 阅读 · 0 评论 -
学习Tensorflow遇到的一些不懂函数的学习
1.tf.argmax()a = tf.constant([[1,5,3], [4,2,6]]) sess = tf.Session() print sess.run(tf.argmax(a, 0))#[1 0 1] print sess.run(tf.argmax(a, 1))#[1 2] #argmax()函数返回最大值的索引,0返回每一列原创 2017-10-11 21:51:16 · 489 阅读 · 0 评论 -
Tensorflow手写数字识别
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data#载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot = True)#批次大小 batch_size = 100 #计算一共有多少个批次 n_batch = mni原创 2017-10-15 11:16:35 · 655 阅读 · 0 评论