POJ 1730 Perfect Pth Powers 两种方法(质数分解+pow枚举)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sdz20172133/article/details/81592577

Perfect Pth Powers

Time Limit: 1000MS

 

Memory Limit: 10000K

Total Submissions: 18756

 

Accepted: 4327

Description

http://poj.org/images/1730_1.jpgWe say that x is a perfect square if, for some integer b, x = b2. Similarly, x is a perfect cube if, for some integer b, x = b3. More generally, x is a perfect pth power if, for some integer b, x = bp. Given an integer x you are to determine the largest p such that x is a perfect pth power.

Input

Each test case is given by a line of input containing x. The value of x will have magnitude at least 2 and be within the range of a (32-bit) int in C, C++, and Java. A line containing 0 follows the last test case.

Output

For each test case, output a line giving the largest integer p such that x is a perfect pth power.

Sample Input

17
1073741824
25
0

Sample Output

1
30
2

Source

Waterloo local 2004.01.31

算法分析:

题意:

给出一个整数x,把x写成x=a^p,求p最大是多少?

实现

一开是枚举暴力算法,不出所料果然超时,网上看了两种做法

第一种:

a^p*b^p=(a*b)^p,(a^p)^q=a^(p*q)

我们可以看看x的分解质因式:x = a1^b1 * a2^b2 … ak^bk,则最终结果为b1,b2,…bk的最大公约数

具体的证明,我也不怎么会,

但可以举个例子,我们假设求144,

144=2^4*3^2=(2*3)^2*4=12^2

想一下,要求最大幂,确实都得满足所有质因子的幂次方。

注意负数,那肯定不能为偶数,把2全部取走就行。

第二种:(如果不理解第一种,第二种可以看看,枚举)

p从31到1遍历(2^31= 2147483647,int数据最大范围),求n的p次开方,转为int型的t,再求t的p次方,转为int型的x,解决了pow精度可能不准问题。

若x和n相等,则求得的p为最大值,break出循环

注意:求n的p次开方用pow()求,因为pow()函数得到的为double型,而double型数据

精度问题,比如当用POW(125*1.0,1.0*1/3),直接取整的时候是4,所以需要在后面加一个0.1,也就是(int)(POW(125*1.0,1.0*1/3)+0.1)比如4可表示为3.9999或4.0000001,所以转为int型时+0.1

代码实现:

#include<cstdio>  
#include<cstring>  
#include<cstdlib>  
#include<cctype>  
#include<cmath>  
#include<iostream>  
#include<sstream>  
#include<iterator>  
#include<algorithm>  
#include<string>  
#include<vector>  
#include<set>  
#include<map>  
#include<stack>  
#include<deque>  
#include<queue>  
#include<list> 
using namespace std;
typedef long long ll; 
    
const long N = 70000;   
long prime[N] = {0},num_prime = 0;  //prime存放着小于N的素数   
int isNotPrime[N] = {1, 1};        // isNotPrime[i]如果i不是素数,则为1 
int Prime()    
{     
     	for(long i = 2 ; i < N ; i ++)       
       	{            
		if(! isNotPrime[i])               
	 		prime[num_prime ++]=i;  
	   //无论是否为素数都会下来     
		for(long j = 0 ; j < num_prime && i * prime[j] <  N ; j ++)
    		{               
		      	isNotPrime[i * prime[j]] = 1;  
	  		if( !(i % prime[j] ) )  //遇到i最小的素数因子
	  			//关键处1                  
				break;           
		}        
	}        
	return 0;   
}  
ll gcd(ll a,ll b) { return b == 0 ? a : gcd(b, a % b); }
int main()
{
	ll n;
	Prime();
	while(scanf("%lld",&n)!=EOF)
	{
		int flag=0;
		if(n==0) break;
	 if(n<0)
	 {
	 	n=-n;
	 	flag=1;
	 }
	 int cnt=0,ans=0;
	 for(int i=0;i<num_prime&&n>1;i++)
	 {
	 	cnt=0;
	 	while(n%prime[i]==0)
		{
		n/=prime[i];
		cnt++;	
		}
		ans=gcd(ans,cnt);
	 }
	 if(n!=1) ans=1; //说明其为素数 ,一开始忘了竟然超时
	 if(flag==1)
	 {
	 	while(ans%2==0)
	 		ans/=2;
	 }
	 printf("%d\n",ans);
	}
    return 0;
}

第二种:

#include<cstdio>  
#include<cstring>  
#include<cstdlib>  
#include<cctype>  
#include<cmath>  
#include<iostream>  
#include<sstream>  
#include<iterator>  
#include<algorithm>  
#include<string>  
#include<vector>  
#include<set>  
#include<map>  
#include<stack>  
#include<deque>  
#include<queue>  
#include<list> 
using namespace std;
int main()
{
    int n;
    while(~scanf("%d",&n) && n)
    {
        if(n > 0)
        {
            for(int i = 31; i >= 1; i--)
            {
                int t = (int)(pow(n*1.0,1.0/i) + 0.1);
               
                int x = (int)(pow(t*1.0,1.0*i) + 0.1);
               
                if(n== x)
                {
                    printf("%d\n",i);
                    break;
                }
            }
 
        }
        else
        {
            n = -n;
            for(int i = 31; i >= 1; i-=2)
            {
                int t = (int)(pow(n*1.0,1.0/i) + 0.1);
                int x = (int)(pow(t*1.0,1.0*i) + 0.1);
                if(n == x)
                {
                    printf("%d\n",i);
                    break;
                }
            }
        }
    }
    return 0;
}

自己chao超时代码

#include<cstdio>  
#include<cstring>  
#include<cstdlib>  
#include<cctype>  
#include<cmath>  
#include<iostream>  
#include<sstream>  
#include<iterator>  
#include<algorithm>  
#include<string>  
#include<vector>  
#include<set>  
#include<map>  
#include<stack>  
#include<deque>  
#include<queue>  
#include<list> 
using namespace std;
typedef long long ll; 
int n;
 
ll quick_qow(ll a,ll b)
{
    long long  res=1;
    while(b>0)
    {
        if(b%2) res=(res*a);
        a=a*a;
        b/=2;
    }
    return res;
}
int isPrime(int n)
{	//返回1表示判断为质数,0为非质数,在此没有进行输入异常检测
	float n_sqrt;
	if(n==2 || n==3) return 1;
	if(n%6!=1 && n%6!=5) return 0;
	n_sqrt=floor(sqrt((float)n));
	for(int i=5;i<=n_sqrt;i+=6)
	{
	    if(n%(i)==0 | n%(i+2)==0) return 0;
	}
        return 1;
} 
int main()
{
	ll n;
	

	while(scanf("%lld",&n)!=EOF)
	{
      if(n==0) break;
      if(isPrime(n))  {cout<<1<<endl;continue;}
        int ans;
      for(int i=2;i<=n;i++)
	  {
	  	ll m=n;
	  	ans=0;
	  	while(m%i==0)
		{
		  m/=i;
		  ans++;
		}
		if(m==1)
		{
			cout<<ans<<endl;
			break;
		}
	  }
	}
    return 0;
}

 

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页