CNN和RNN学习记录

本文记录了2018年6月8日的学习内容,专注于深度学习中的循环神经网络(RNN)和卷积神经网络(CNN)。讨论了深度学习的一般原则,如预训练和微调,并介绍了几种DL模型,包括SAE, RBM, DBN, RNN和CNN。此外,详细阐述了一维和二维卷积的应用,以及在计算中如何使用互相关代替卷积。最后,文章探讨了机器学习中的梯度消失和梯度爆炸问题及其解决方案。" 132330148,19671765,容器镜像安全编程实践与策略,"['安全', '编程', '容器技术', '容器镜像安全', '隔离技术']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2018/6/8学习记录

标签(空格分隔): 记录 深度学习


深度学习的一般性原则:先通过非监督学习对网络逐层进行贪婪的预训练,再用监督学习对网络进行微调。通过预训练的方式可以为深度神经网络提供较为理想的初始参数,降低了深度神经网络的优化程度。
深度学习中一些DL模型:堆栈式自动编码器(Stacked Auto-Encoder SAE),限制玻尔兹曼机(Restricted Boltzmann Machine RBM),深度信念网络(Deep Belief Network DBN),循环神经网络(Recurrent Neural Network RNN),卷积神经网络(Convolutional Neural Network CNN)


##循环神经网络(RNN)


##卷积神经网络(CNN)
一维卷积:主要用在信号处理中。
二维卷积:二维卷积主要是用在图像处理中,在计算时通过卷积核(滤波器)来提取特征,不同的卷积核可以得到不同的特征,图像经过卷积操作后得到的结果也叫作特征映射,二维卷积计算时会发生翻转(就是从两个维度,从上到下,从左到右翻转次序,旋转180°)。
互相关(不翻转卷积):卷积核的作用就是从图像中提取出需要的特征,计算卷积时需要进行卷积翻转,因此

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值