Shape Correspondence and Functional Maps

https://www.youtube.com/watch?v=oAxe7DdlXwg

1 ICP的解法 21:55
这里写图片描述

简单推导一下:
先算旋转, 这里以质心进行旋转 iR(xiμx)+μyyi
这样就先化成了http://blog.csdn.net/seamanj/article/details/50526639这里面的问题
算出R后展开所得到的其余部分就是t

2 Laplace-Beltrami Operator的介绍 33:10
这里写图片描述

首先求 f 在surface上面的梯度,然后再求每个点的散度, 这里的div=Δ. 对于离散的情况来说, Laplace-Beltrami operator是一个矩阵, 可以理解从一点到另一点的流量

Heat equation 35:15

ft=Δf

3 Laplace-Beltrami Eigenfunctions的理解
这里写图片描述

一个函数f在surface上面有一个确定的标量值,(该值可以用颜色表现出来), 对于surface上的所有点就相当于一个向量,而在这个向量是在一个向量空间里面,可以由这个向量空间中的基来表示,如果求这个基呢? 根据这个surface的laplace-beltrami operator的固有属性(流通矩阵)的eigendecomposition分解来求的, 因为f是个函数(变动的), 求出的特征向量们 Φi 也是变动的, 所以称为特征函数. 特征值越大对应的特征函数越平滑,就跟傅里叶级数一样, 不然那不是高频率部分占主导因素了.注意高频率部分是细节, 低频率部分是主导.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值