Generative adversarial nets

本文解析了生成对抗网络(GAN)的基本原理,重点介绍了GAN的核心公式(1),解释了真实数据概率密度与生成数据概率密度的关系,并通过图表展示了GAN的工作机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

号称GAN的鼻祖?没怎么细看, 主要说下公式(1)和图1

  1. 公式(1)

pdatap_{data}pdata是原始数据的概率密度,pzp_zpzzzz数据的分布密度, zzz数据通过生成网络GGG变成x, 通过网络GGG,z的分布pzp_zpz可以变成x的分布pg(x)p_{g}(x)pg(x), pg(x)p_{g}(x)pg(x)是生成数据的分布密度.

先来看D(x)D(x)D(x),xxx越接近原数据它的值越大越接近1, 所以里面一层max, 可以这么理解, 如果x为原始数据的概率pdata(x)p_{data}(x)pdata(x)越大, 那么 D(x)也就越大, 也就是公式的第一部分, 如果生成的话,那么D(G(z))D(G(z))D(G(z))就应该越小, 相反1−D(G(z))1-D(G(z))1D(G(z))也就越大. 加个log目标函数仍然没变.我猜主要是为了加快收敛(指数收敛)

然后GGG的目的, 就是产生以假乱真的数据, 让DDD分辨不出来, 这样(1-D(G(z)))就会越接近0, 这就是为什么外面一层用min

  1. 图1

下面一根线代表z域, 上面一根线代表x域, 黑点代表原有数据集的概率分布pdata(x)p_{data}(x)pdata(x), 绿细线代表生成数据集的概率分布pg(x)=G(pz(z))p_{g}(x)=G(p_z(z))pg(x)=G(pz(z)), 蓝色虚线代表识别网络判断为原有数据集的概率D(pdata(x))D(p_{data}(x))D(pdata(x)).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值