高等数学

卡特兰数

令h(0)=1,h(1)=1,catalan数满足递推式。h(n)= h(0)*h(n-1)+h(1)*h(n-2) + … + h(n-1)h(0) (n>=2)。
也就是说,如果能把公式化成上面这种形式的数,就是卡特兰数。

通项公式: h ( n ) = C 2 n n n + 1 h(n)= \cfrac{C_{2n}^{n}}{n+1} h(n)=n+1C2nn

映射

给定非空集合 X,Y,法则f, 对X中的每个元素x , 都有唯一的y与之对应
定义域  Df
值域  Rf
值域不一定等于Y

函数极限

左极限 右极限
x->x0 极限存在 充分必要条件 左极限 右极限存在 且相等
(x0 可以没有定义,无关极限)

性质
1.函数极限唯一性
2.局部有界性(在某个范围有上下界)
3.局部保号性

函数与数列极限 ({xn}->x0)

无穷小与无穷大

无穷小:趋于0,从正,或者从负 (0是可以做为无穷小的常数定义)
无穷大:正无穷 和负无穷

极限运算法则

定理1. 两个无穷小的和(差)为无穷小。
		有限个无穷小的和(差)还是无穷小。
		
定理2:有界函数与无穷小的乘积是无穷小。(*****)

定理3:lim f(x) = A ,lim g(x) = B, 趋于同一个数或者无穷(极限存在的情况下,有限个)

1. lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A + B \lim[f(x) \pm g(x)] = \lim f(x) \pm \lim g(x) = A + B lim[f(x)±g(x)]=limf(x)±limg(x)=A+B

2. lim ⁡ [ f ( x ) ∗ g ( x ) ] = lim ⁡ f ( x ) ∗ lim ⁡ g ( x ) = A ∗ B \lim[f(x) * g(x)] = \lim f(x) * \lim g(x) = A * B lim[f(x)g(x)]=limf(x)limg(x)=AB

3. lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B ( B ≠ 0 ) \lim \dfrac{ f(x)}{ g(x)} = \dfrac{\lim f(x)}{\lim g(x)} = \dfrac{A}{B} (B\neq0) limg(x)f(x)=limg(x)limf(x)=BAB=0

定理4:
定理5:如果一个函数 >= 另一个函数 ,f(x) >= g(x) lim f(x) >= lim g(x)

极限存在准则(两个重要极限)

准则1:数列 {xn} {yn}  (夹逼准则)
		1.存在n0 属于N 使得n > n0 时 yn <= xn<=zn
		2.lim yn = a 	lim zn = a
		  n->oo			n->oo
		g(x) <= f(x) <= h(x)  limg(x) = A ,limh(x) = A,则 lim f(x) = A;		

lim ⁡ x → 0 s i n x x = 1 \lim\limits_{x\to0}\dfrac{sinx}{x} = 1 x0limxsinx=1

准则2:单调有界数列必有极限。
	   收敛比有界,有界不一定收敛。

lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim\limits_{x\to\infty}(1 + \dfrac{1}{x})^x = e xlim(1+x1)x=e

柯西准则:{xn} 收敛的 充分必要条件 任给x 存在 N ,m>N 时,|xn - xm| < x

无穷小的比较
lim ⁡ β α = 0 ( 高 阶 无 穷 小 ) β = o ( α ) \lim \dfrac{\beta}{\alpha} = 0 (高阶无穷小) \beta = o(\alpha) limαβ=0()β=o(α)
lim ⁡ β α = ∞ ( 低 阶 无 穷 小 ) \lim \dfrac{\beta}{\alpha} = \infty (低阶无穷小) limαβ=()
lim ⁡ β α = c ≠ 0 ( 同 阶 无 穷 小 ) \lim \dfrac{\beta}{\alpha} = c \neq 0 (同阶无穷小) limαβ=c=0()
lim ⁡ β α k = c ≠ 0 ( k 阶 无 穷 小 ) \lim \dfrac{\beta}{\alpha^k} = c \neq 0 (k阶无穷小) limαkβ=c=0(k)
lim ⁡ β α = 1 ( 等 价 无 穷 小 ) β \lim \dfrac{\beta}{\alpha} = 1 (等价无穷小) \beta limαβ=1()β ~ α \alpha α

sin ⁡ x \sin x sinx~ x x x
1 + x n − 1 \sqrt[n]{1+x} - 1 n1+x 1~ 1 n x \dfrac{1}{n}x n1x

定理1
β 与 α 等 价 , β = α + o ( α ) \beta 与 \alpha 等价,\beta = \alpha + o(\alpha) βαβ=α+o(α)

定理2
α ∼ A , β ∼ B , 且 lim ⁡ A B 存 在 , lim ⁡ α β ∼ lim ⁡ A B \alpha \sim A ,\beta\sim B,且 \lim \frac{A}{B}存在,\lim \frac{\alpha}{\beta} \sim \lim \frac{A}{B} αA,βB,limBA,limβαlimBA

1.两个无穷小比的极限,分子和分母用等价无穷小替换
2.分子或分母是若干因子的乘积,可对其中一个或几个因子做等价无穷小替换

连续性
lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) \lim\limits_{\Delta x \rightarrow 0} \Delta y = \lim\limits_{\Delta x \rightarrow 0} {f(x_0 + \Delta x) - f(x_0)} Δx0limΔy=Δx0limf(x0+Δx)f(x0)

lim ⁡ Δ x → 0 f ( x 0 + Δ x ) = f ( x 0 ) \lim\limits_{\Delta x \rightarrow 0} {f(x_0 + \Delta x)} = f(x_0) Δx0limf(x0+Δx)=f(x0)

lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x \rightarrow x_0} f(x)= f(x_0) xx0limf(x)=f(x0)
连续条件
1.在x0处 有极限
2.在x0处 有定义
3.极限值 = 函数值

左连续:
lim ⁡ x → x − f ( x ) = f ( x 0 ) \lim\limits_{x \rightarrow x^-} f(x) = f(x_0) xxlimf(x)=f(x0)

右连续:
lim ⁡ x → x + f ( x ) = f ( x 0 ) \lim\limits_{x \rightarrow x^+} f(x) = f(x_0) xx+limf(x)=f(x0)

连续的充要条件 左右连续

几何含义:一笔画

cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta cos(α+β)=cosαcosβsinαsinβ
cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta cos(αβ)=cosαcosβ+sinαsinβ
sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± cos ⁡ α sin ⁡ β \sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta sin(α±β)=sinαcosβ±cosαsinβ
sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin \alpha \cos \beta = \frac{1}{2}[\sin (\alpha + \beta) + \sin (\alpha -\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]
cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos \alpha \cos \beta = \frac{1}{2}[\cos (\alpha + \beta) + \cos (\alpha - \beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]
sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \sin \alpha \sin \beta = -\frac{1}{2}[\cos (\alpha + \beta) - \cos (\alpha - \beta)] sinαsinβ=21[cos(α+β)cos(αβ)]
sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 \sin \alpha + \sin \beta = 2\sin {\frac{\alpha + \beta}{2}}\cos{\frac{\alpha - \beta}{2}} sinα+sinβ=2sin2α+βcos2αβ
cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos \alpha + \cos \beta = 2\cos{\frac{\alpha + \beta}{2}}\cos{\frac{\alpha - \beta}{2}} cosα+cosβ=2cos2α+βcos2αβ
cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos \alpha - \cos \beta=-2\sin {\frac{\alpha + \beta}{2}}\sin {\frac{\alpha - \beta}{2}} cosαcosβ=2sin2α+βsin2αβ

第一类:左右极限都存在 (可去间断点,跳跃间断点)
第二类:左右极限少一个不存在 (无穷间断点,震荡间断点)

闭区间上连续函数的性质

定理1:有界性与最大值最小值定理
定理2: [ a , b ] 连 续 f ( a ) , f ( a ) , f ( b ) 异 号 f ( a ) f ( b ) < 0 , 存 在 ξ , f ( ξ ) = 0 。 ( 零 点 存 在 定 理 ) [a,b] 连续f(a), f(a) ,f(b) 异号 f(a)f(b) < 0,存在 \xi,f(\xi) = 0。(零点存在定理) [a,b]f(a),f(a),f(b)f(a)f(b)<0,ξ,f(ξ)=0()

定理3: f ( x ) 在 [ a , b ] 上 连 续 , f ( a ) = A , f ( b ) = B , 对 C ( 在 A 与 B 之 间 ) , 至 少 存 在 一 点 ξ , f ( ξ ) = C 。 f(x) 在 [a,b]上连续,f(a) = A,f(b) = B,对C(在 A与B之间),至少存在一点\xi,f(\xi) = C。 f(x)[a,b]f(a)=A,f(b)=BC(AB)ξ,f(ξ)=C(介值定理)

导数
y = f(x) 在x0的邻域内有定义。

1. f ( x ) = c , f ′ ( x ) = 0. f(x) = c, f'(x) = 0. f(x)=c,f(x)=0.
2. f ( x ) = x n , f ′ ( x ) = n x n − 1 ; f(x) = x^n ,f'(x) = nx^{n-1}; f(x)=xn,f(x)=nxn1;
3. f ( x ) = s i n x , f ′ ( x ) = c o s x ; f(x) = sinx,f'(x) = cosx; f(x)=sinx,f(x)=cosx;
4. f ( x ) = c o s x , f ′ ( x ) = − s i n x ; f(x) = cosx,f'(x) = -sinx; f(x)=cosx,f(x)=sinx;
5. f ( x ) = a x , f ′ ( x ) = a x l n a ; f(x) = a^x,f'(x) = a^x lna; f(x)=ax,f(x)=axlna;
6.$log_a x ,\frac{1}{x lna}; $
l n ′ x = 1 x ; ln' x = \frac{1}{x}; lnx=x1;

左导数,右导数

求导法则
( u + v ) ′ = u ′ + v ′ (u + v)' = u' + v' (u+v)=u+v
( u − v ) ′ = u ′ − v ′ (u - v)' = u' - v' (uv)=uv
( u v ) ′ = u ′ v + u v ′ (uv)' = u'v + uv' (uv)=uv+uv
( u v ) ′ = ( u ′ v − u v ′ ) ( v 2 ) (\frac{u}{v})' = \frac{(u'v - uv')}{(v^2)} (vu)=(v2)(uvuv)

反函数求导

[ f − 1 ( x ) ] ′ = 1 f ′ ( y ) [f^{-1}(x)]' = \frac{1}{f'(y)} [f1(x)]=f(y)1

复合函数求导
从外到内分别求导

y = l n ( sin ⁡ x ) = 1 sin ⁡ x cos ⁡ x ; y = ln(\sin x) = \frac{1}{\sin x}\cos x; y=ln(sinx)=sinx1cosx;

y = x x y = x^x y=xx
y = e l n x x = e x l n x y =e^{ln {x ^x}} = e^{xlnx} y=elnxx=exlnx

高阶导数
求多次导数 y ′ , y ′ ′ , y ′ ′ ′ , y ( 4 ) , y ( 5 ) , . . . y' ,y'', y''', y^{(4)}, y^{(5)}, ... y,y,y,y(4),y(5),...
4阶以上用数字表示

微分
可微条件 : 可导
d y = f ′ ( x ) d x ; dy = f'(x)dx; dy=f(x)dx;
例子:
y = x 3 , x = 2 , Δ x = 0.02 y = x^3, x = 2,\Delta x = 0.02 y=x3,x=2,Δx=0.02
y ′ = 3 x 2 y' = 3x^2 y=3x2
d y = 3 x 2 ∣ x = 2 Δ x = 12 Δ x = 0.24 dy = 3x^2|_{x = 2} \Delta x = 12\Delta x = 0.24 dy=3x2x=2Δx=12Δx=0.24

近视计算
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y = f(x_0+\Delta x) - f(x_0) Δy=f(x0+Δx)f(x0)
d y = f ′ ( x 0 ) Δ x dy = f^\prime(x_0)\Delta x dy=f(x0)Δx
d y dy dy ~ Δ y \Delta y Δy
f ( x 0 + Δ x ) f(x_0+\Delta x) f(x0+Δx) ~ f ′ ( x 0 ) Δ x + f ( x 0 ) f^\prime(x_0)\Delta x + f(x_0) f(x0)Δx+f(x0)
x = ? Δ x = ? x = ? \Delta x =? x=?Δx=?

x->0(x趋于0),时
1. ( 1 + x ) α 1.(1+x)^\alpha 1.(1+x)α ~ 1 + α x 1 + \alpha x 1+αx
2. s i n x 2. sin x 2.sinx~ x x x
3. t a n x 3.tanx 3.tanx ~ x x x
4. e x 4.e^x 4.ex ~ 1 + x 1 + x 1+x
5. l n ( 1 + x ) 5.ln(1+x) 5.ln(1+x) ~ x x x

微分中值定理
费 马 引 理 : f ( x ) 在 x 0 处 U ( x 0 ) 有 定 义 , 在 x 0 处 可 导 , 如 f ( x ) ≤ f ( x 0 ) . 任 意 x 属 于 U ( x 0 ) 则 f ′ ( x 0 ) = 0. 费马引理:f(x) 在x_0处 U(x_0)有定义,在x_0处可导,如f(x) \leq f(x_0). 任意x 属于U(x_0) 则f'(x0) = 0. f(x)x0U(x0)x0f(x)f(x0).xU(x0)f(x0)=0.

驻点:导数等于0

罗尔定理:
f ( x ) 满 足 f(x)满足 f(x)
1. 在 [ a , b ] 连 续 . 1.在[a,b]连续. 1.[a,b].
2. 在 ( a , b ) 可 导 . 2.在(a,b)可导. 2.(a,b).
3. f ( a ) = f ( b ) . 3.f(a) = f(b). 3.f(a)=f(b).
则 ∃ ξ , ∈ ( a , b ) , f ′ ( ξ ) = 0. 则 \exists \xi ,\in(a,b) ,f^\prime (\xi) = 0. ξ,(a,b),f(ξ)=0.

拉格朗日中值定理:
1. [ a , b ] 连 续 . 1.[a,b]连续. 1.[a,b].
2. ( a , b ) 可 导 2.(a,b)可导 2.(a,b)
∃ ξ ∈ ( a , b ) , f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) . \exists\xi \in(a,b) ,f(b) - f(a) = f^\prime(\xi)(b-a). ξ(a,b),f(b)f(a)=f(ξ)(ba).

柯西中值定理:
1. [ a , b ] 连 续 1.[a,b]连续 1.[a,b]
2. ( a , b ) 可 导 2.(a,b)可导 2.(a,b)
3. 任 意 x 属 于 ( a , b ) , F ′ ( x ) ≠ 0 3.任意x 属于(a,b),F'(x) \neq 0 3.x(a,b)F(x)=0
∃ ξ ∈ ( a , b ) , f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \exists\xi \in (a,b),\frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f\prime(\xi)}{F^\prime(\xi)} ξ(a,b)F(b)F(a)f(b)f(a)=F(ξ)f(ξ)

洛必达法则
0 0 , ∞ ∞ , 0 ∗ ∞ , ∞ − ∞ , 0 0 , 1 ∞ , ∞ 0 \frac{0}{0}, \frac{\infty}{\infty}, 0*\infty, \infty-\infty, 0^0, 1^\infty, \infty^0 00,,0,,00,1,0

1. x → a 时 , f ( x ) → 0 , F ( x ) → 0. 1.x\to a时, f(x)\to 0 ,F(x)\to0. 1.xa,f(x)0,F(x)0.
2. 在 a 的 去 心 邻 域 内 , f ′ ( x ) F ′ ( x ) 存 在 , 且 F ′ ( x ) ≠ 0. 2.在a的去心邻域内,f^\prime(x) F^\prime(x)存在,且 F^\prime(x) \neq 0. 2.a,f(x)F(x)F(x)=0.
3. lim ⁡ x → a f ′ ( x ) F ′ ( x ) 存 在 ( 或 无 穷 大 ) , 3.\lim \limits_{x \to a} \frac{f^\prime(x)}{F^\prime(x) }存在(或无穷大), 3.xalimF(x)f(x)(),
则 lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) 则 \lim \limits_{x \to a} \frac{f(x)}{F(x)} = \lim \limits_{x \to a} \frac{f^\prime(x)}{F^\prime(x)} xalimF(x)f(x)=xalimF(x)f(x)

1.lim f'(x)/F'(x) 不存在 ,不能用洛必达法则
2.可以多次求导
3.求导后,检查符号条件
4.适当用等价无穷小替换
5.适当提取常数(极限为常数)

泰勒公式
f ( x ) ≈ f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x) \approx f(x_0) + f'(x_0)(x-x_0) f(x)f(x0)+f(x0)(xx0)
P n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + . . . + a n ( x − x 0 ) n P_n(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)^2 + ...+a_n(x-x_0)^n Pn(x)=a0+a1(xx0)+a2(xx0)2+...+an(xx0)n

f ( x ) 在 x 0 处 有 n 阶 导 数 , 存 在 x 0 的 一 个 邻 域 , 使 得 对 于 邻 域 中 的 一 点 x , f(x) 在x_0处有n阶导数, 存在 x_0的一个邻域,使得对于邻域中的一点x, f(x)x0n,x0使x
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + . . . f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) . ( R n ( x ) = o ( ( x − x 0 ) n ) 高 阶 无 穷 小 ) f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!} (x-x_0)^2 + ...\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n + R_n(x). (R_n(x) = o((x-x_0)^n) 高阶无穷小) f(x)=f(x0)+1!f(x0)(xx0)+2!f(x0)(xx0)2+...n!f(n)(x0)(xx0)n+Rn(x).(Rn(x)=o((xx0)n))

ξ 介 于 x 0 到 x 之 间 \xi 介于 x_0到x之间 ξx0x
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 . R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}. Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1.

泰勒中值
n = 0 时 , f ( x ) = f ′ ( ξ ) ( x − x 0 ) + f ( x 0 ) . f ′ ( ξ ) = f ( x ) − f ( x 0 ) x − x 0 n = 0时, f(x) = f'(\xi)(x-x_0) + f(x_0). f'(\xi) = \frac{f(x) - f(x_0)}{x-x_0} n=0,f(x)=f(ξ)(xx0)+f(x0).f(ξ)=xx0f(x)f(x0)
麦克劳林
x 0 = 0 时 , f ( x ) = f ( 0 ) + f ′ ( 0 ) 1 ! x + . . . + f ( n ) ( 0 ) n ! x n + f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 , ( 0 < θ < 1 ) x_0 = 0时,f(x) = f(0) + \frac{f'(0)}{1!}x + ... + \frac{f^{(n)}(0)}{n!} x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1},(0<\theta<1) x0=0,f(x)=f(0)+1!f(0)x+...+n!f(n)(0)xn+(n+1)!f(n+1)(θx)xn+1,(0<θ<1)
例子:
e x , 求 它 的 带 拉 格 朗 日 余 项 的 麦 克 劳 林 公 式 e^x,求它的带拉格朗日余项的麦克劳林公式 ex,
f ′ ( x ) = f ′ ′ ( x ) = ⋯ = f ( n ) ( x ) = e x , f ( n + 1 ) ( θ x ) = e θ x f'(x) = f''(x)=\dots=f^{(n)}(x)=e^x,f^{(n+1)}(\theta x)=e^{\theta x} f(x)=f(x)==f(n)(x)=ex,f(n+1)(θx)=eθx
e x = f ( 0 ) + f ′ ( 0 ) 1 ! x + . . . + f ( n ) ( 0 ) n ! x n + f ( n + 1 ) ( θ x ) ( n + 1 ) ! x n + 1 , ( 0 < θ < 1 ) e^x=f(0) + \frac{f'(0)}{1!}x + ... + \frac{f^{(n)}(0)}{n!} x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1},(0<\theta<1) ex=f(0)+1!f(0)x+...+n!f(n)(0)xn+(n+1)!f(n+1)(θx)xn+1,(0<θ<1)
e x = 1 + 1 1 ! x + 1 2 ! x 2 + ⋯ + 1 n ! x n + 1 ( n + 1 ) ! e θ x x n + 1 e^x=1 +\frac{1}{1!}x+\frac{1}{2!}x^2+\dots+\frac{1}{n!}x^n+\frac{1}{(n+1)!}e^{\theta x}x^{n+1} ex=1+1!1x+2!1x2++n!1xn+(n+1)!1eθxxn+1
e x − 1 e^x-1 ex1~ x x x 就是忽略高阶无穷小

单调性(一阶导数有关)
x 1 > x 2 , f ′ ( ξ ) = f ( x 1 ) − f ( x 2 ) x 1 − x 2 x1 > x2, f'(\xi) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} x1>x2,f(ξ)=x1x2f(x1)f(x2)
凸凹性
定 义 : x 1 , x 2 . 定义:x_1,x_2. x1x2.
凹 : f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 凹: f(\frac{x_1+x_2}{2})< \frac{f(x_1) + f(x_2)}{2} :f(2x1+x2)<2f(x1)+f(x2)
凸 : 相 反 凸:相反 :
f ′ ′ ( x ) > 0 凹 f''(x) > 0 凹 f(x)>0
f ′ ′ ( x ) < 0 凸 f''(x) < 0 凸 f(x)<0

二元一次方程求根公式

x = − b ± b 2 − 4 a c 2 a x=\frac{-b \pm \sqrt[]{b^2-4ac}}{2a} x=2ab±b24ac

不定积分
定 义 : F ′ ( x ) = f ( x ) 定义:F'(x) = f(x) F(x)=f(x)
F ( x ) 是 f ( x ) 一 个 原 函 数 F(x) 是f(x)一个原函数 F(x)f(x)

导函数与不定积分

原函数存在定理:连续一定有原函数
[ F ( x ) + c ] ′ = f ( x ) [F(x) + c]' = f(x) [F(x)+c]=f(x)

∫ f ( x ) d x = F ( x ) + c \int f(x)dx = F(x) + c f(x)dx=F(x)+c
不定积分性质:
1. ∫ [ f ( x ) ± g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x 1.\int {[f(x) \pm g(x)]dx} = \int f(x)dx \pm \int g(x)dx 1.[f(x)±g(x)]dx=f(x)dx±g(x)dx
2. ∫ k f ( x ) d x = k ∫ f ( x ) d x 2.\int {kf(x)dx} = k\int {f(x)dx} 2.kf(x)dx=kf(x)dx

多项式除法
∫ 2 x 4 + x 2 + 3 x 2 + 1 d x \int {\frac{2x^4 + x^2 + 3}{x^2 + 1}dx} x2+12x4+x2+3dx

2 x 4 + 0 x 3 + x 2 + 0 x + 3 x 2 + 1 \sqrt[x^2+1]{2x^4+0x^3+x^2+0x + 3} x2+12x4+0x3+x2+0x+3
依次消除最高指数项,商为倍数,余数保留
∫ 2 x 4 + x 2 + 3 x 2 + 1 d x = ∫ ( 2 x 2 − 1 + 4 x 2 + 1 ) d x \int {\frac{2x^4 + x^2 + 3}{x^2 + 1}dx} = \int {(2x^2-1+\frac{4}{x^2+1})dx} x2+12x4+x2+3dx=(2x21+x2+14)dx

第一类换元积分法(凑)
∫ 1 d F ( u ) = F ( u ) + C \int 1 dF(u) = F(u) + C 1dF(u)=F(u)+C
第二类换元积分法()

分部积分
∫ u d v = u v − ∫ v d u \int udv = uv - \int vdu udv=uvvdu
谁放在d的后面,向d后面拿,优先级
1. e x e^x ex
2. sin ⁡ x cos ⁡ x \sin x \cos x sinxcosx
3. x n x^n xn

定积分

1.求面积
定义:
f ( x ) 在 [ a , b ] 上 有 界 , 在 [ a , b ] 上 任 意 插 入 分 点 , 分 成 n 个 小 区 间 , Δ x 1 … Δ x n , f(x)在[a,b]上有界,在[a,b]上任意插入分点,分成n个小区间,\Delta x_1 \dots \Delta x_n, f(x)[a,b][a,b]n,Δx1Δxn,
任 取 一 点 ξ , λ = m a x ( Δ x 1 . . . Δ x n ) . 任取一点 \xi, \lambda = max(\Delta x_1 ... \Delta x_n). ξ,λ=max(Δx1...Δxn).
∫ a b f ( x ) d x = lim ⁡ λ → 0 ∑ 1 n Δ x i f ( ξ i ) \int_a^b {f(x)dx} = \lim \limits_{\lambda \to 0} \sum_1^n {\Delta x_i f(\xi _i)} abf(x)dx=λ0lim1nΔxif(ξi)

∑ 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_1^n{i^2} = \frac{n(n+1)(2n+1)}{6} 1ni2=6n(n+1)(2n+1)
定理1: 只要连续,可积
定理2: 有界,有限个间断点,可积

几何意义

1. f ( x ) ≥ 0 f(x) \geq 0 f(x)0
2. f ( x ) ≤ 0 , 定 积 分 是 负 的 , Δ x i ≥ 0 f(x) \leq 0, 定积分是负的,\Delta x_i \geq 0 f(x)0,Δxi0
3. f ( x ) 有 ≥ 0 , 有 ≤ 0 , 结 果 不 确 定 , 正 积 分 + 负 积 分 f(x)有 \geq 0,有 \leq 0,结果不确定,正积分 + 负积分 f(x)0,0,+

1.矩形法
2.梯形法
3.抛物线法
y = p x 2 + q x + r y = px^2+qx +r y=px2+qx+r

定积分性质:
1. b = a . ∫ a a f ( x ) = 0 b = a.\int_a^a f(x) = 0 b=a.aaf(x)=0
2. ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int_a^b {f(x)dx} = -\int_b^a{f(x)dx} abf(x)dx=baf(x)dx

性质1: ∫ a b ( α f ( x ) + β g ( x ) ) d x = α ∫ a b f ( x ) d x + β ∫ a b g ( x ) d x . \int _a^b {(\alpha f(x)+ \beta g(x) )dx} =\alpha \int_a^b {f(x)dx} + \beta \int_a^b{g(x)dx}. ab(αf(x)+βg(x))dx=αabf(x)dx+βabg(x)dx.

性质2: a < < b , ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x a<<b ,\int_a^b{f(x)dx} = \int _a^c{f(x)dx} +\int _c^b {f(x)dx} a<<b,abf(x)dx=acf(x)dx+cbf(x)dx

性质3: f ( x ) ≡ 1. ∫ a b 1 d x = b − a f(x) \equiv 1. \int _a^b {1dx}=b-a f(x)1.ab1dx=ba
∫ a b k d x = k ( b − a ) \int _a^b {kdx} = k(b-a) abkdx=k(ba)

性质4:
f ( x ) ≥ 0. ∫ a b f ( x ) d x ≥ 0 f(x) \geq 0. \int_a^b {f(x)dx} \geq 0 f(x)0.abf(x)dx0
f ( x ) ≤ 0. ∫ a b f ( x ) d x ≤ 0 f(x) \leq0. \int_a^b {f(x)dx} \leq 0 f(x)0.abf(x)dx0

推论1:
f ( x ) ≤ g ( x ) . ∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x f(x) \leq g(x). \int _a^b{f(x)dx} \leq \int _a^b{g(x)dx} f(x)g(x).abf(x)dxabg(x)dx
g ( x ) − f ( x ) ≥ 0. ∫ a b [ g ( x ) − f ( x ) ] ≥ 0 g(x) - f(x) \geq 0. \int_a^b {[g(x) - f(x)]} \geq 0 g(x)f(x)0.ab[g(x)f(x)]0

推论2:
∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \left| \int_a^b{f(x)dx} \right| \leq \int_a^b{|f(x)|dx} abf(x)dxabf(x)dx
− ∣ f ( x ) ∣ ≤ f ( x ) ≤ ∣ f ( x ) ∣ -|f(x)| \leq f(x) \leq |f(x)| f(x)f(x)f(x)
− ∫ a b ∣ f ( x ) ∣ d x ≤ ∫ a b f ( x ) d x ≤ ∫ a b ∣ f ( x ) ∣ d x -\int_a^b{|f(x)|dx} \leq \int_a^b {f(x)dx} \leq \int_a^b {|f(x)|dx} abf(x)dxabf(x)dxabf(x)dx

性质5:
M,m,分别为最大,最小值。
m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a) \leq \int_a^b{f(x)dx}\leq M(b-a) m(ba)abf(x)dxM(ba)

性质6:定积分中值定理: f(x) 连续 .
存 在 ξ ∈ [ a , b ] , ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . 存在 \xi \in[a,b], \int_a^b {f(x)dx} =f(\xi)(b-a). ξ[a,b],abf(x)dx=f(ξ)(ba).

m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a) \leq \int_a^b{f(x)dx}\leq M(b-a) m(ba)abf(x)dxM(ba)

m ≤ 1 b − a ∫ a b f ( x ) d x ≤ M m \leq \frac{1}{b-a}\int_a^b{f(x)dx} \leq M mba1abf(x)dxM

f ( ξ ) = 1 b − a ∫ a b f ( x ) d x . f(\xi) = \frac{1}{b-a}\int_a^b{f(x)dx}. f(ξ)=ba1abf(x)dx. (平均值)

积分上限函数
Φ ( x ) = ∫ a x f ( t ) d t \Phi(x)=\int_a^x{f(t)dt} Φ(x)=axf(t)dt
定理1:
Φ ′ ( x ) = d d x ∫ a x f ( t ) d t = f ( x ) \Phi^ \prime (x) = \frac{d}{dx} \int_a^x {f(t)dt} = f(x) Φ(x)=dxdaxf(t)dt=f(x)
定理2:
Φ ( x ) = ∫ a x f ( t ) d t 是 f ( x ) 的 一 个 原 函 数 \Phi (x) = \int_a^x {f(t)dt} 是f(x)的一个原函数 Φ(x)=axf(t)dtf(x)

[ ∫ φ ( x ) ϕ ( x ) f ( t ) d t ] = f ( ϕ ( x ) ) ϕ ′ ( x ) − f ( φ ( x ) ) φ ′ ( x ) [\int_{\varphi(x)}^{\phi (x)} {f(t)dt}] = f(\phi(x)) \phi ^ \prime (x) - f(\varphi (x)) \varphi ^\prime (x) [φ(x)ϕ(x)f(t)dt]=f(ϕ(x))ϕ(x)f(φ(x))φ(x)

牛顿-莱布尼茨公式
∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int _a^b {f(x)dx} = F(x)|_a^b =F(b) - F(a) abf(x)dx=F(x)ab=F(b)F(a)

换元
x = ϕ ( x ) x = \phi (x) x=ϕ(x)
ϕ ( α ) = a , ϕ ( β ) = b \phi (\alpha) = a, \phi (\beta) = b ϕ(α)=a,ϕ(β)=b
∫ a b f ( x ) d x = ∫ α β f ( ϕ ( x ) ) ϕ ( x ) d t \int _a^b f(x)dx = \int _{\alpha}^{\beta} {f(\phi(x)) \phi(x)dt} abf(x)dx=αβf(ϕ(x))ϕ(x)dt

分部积分
∫ a b u d v = u v ∣ a b − ∫ a b v d u \int _a^b {udv} = uv|_a^b - \int _a^b {vdu} abudv=uvababvdu

反常积分
1.无穷限的反常积分
∫ a + ∞ f ( x ) d x = lim ⁡ t − > + ∞ ∫ a t f ( x ) d x \int _a^{+\infty} {f(x)dx}= \lim \limits_{t->+ \infty} \int _a^t {f(x)dx} a+f(x)dx=t>+limatf(x)dx

∫ − ∞ b f ( x ) d x = lim ⁡ t − > − ∞ ∫ t b f ( x ) d x \int _{-\infty}^{b} {f(x)dx}= \lim \limits_{t->- \infty} \int _t^b {f(x)dx} bf(x)dx=t>limtbf(x)dx

∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ 0 f ( x ) d x + ∫ 0 + ∞ f ( x ) d x \int _{-\infty}^{+\infty} {f(x)dx}=\int _{-\infty}^{0} {f(x)dx} + \int _0^{+\infty} {f(x)dx} +f(x)dx=0f(x)dx+0+f(x)dx

∫ a + ∞ f ( x ) d x = F ( + ∞ ) − F ( a ) \int_a^{+\infty} {f(x)dx} = F(+\infty) - F(a) a+f(x)dx=F(+)F(a)

∫ − ∞ b f ( x ) d x = F ( b ) − F ( − ∞ ) \int _{-\infty}^{b} {f(x)dx} = F(b) - F(-\infty) bf(x)dx=F(b)F()

∫ − ∞ + ∞ f ( x ) d x = F ( x ) ∣ − ∞ + ∞ \int _{-\infty}^{+\infty} {f(x)dx} = F(x)|_{-\infty}^{+\infty} +f(x)dx=F(x)+

无界函数的反常积分(瑕积分)
瑕点

Γ \Gamma Γ函数
Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x . ( s > 0 ) \Gamma(s) = \int_0^{+\infty} {e^{-x}x^{s-1}dx}.(s>0) Γ(s)=0+exxs1dx.(s>0)
1. Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1)=s\Gamma (s) Γ(s+1)=sΓ(s)

微分方程
含有导数 阶

通阶:含常数的个数 = 阶

可分离变量
y在等号一边 , x在等号一边
∫ g ( y ) d y = ∫ f ( x ) d x \int {g(y) dy} = \int {f(x)dx} g(y)dy=f(x)dx

齐次方程
y x 整 体 出 现 \frac{y}{x} 整体出现 xy
d y d x = 1 + ( y x ) 2 1 − 2 ( y x ) 2 \frac{dy}{dx} = \frac{1+(\frac{y}{x})^2}{1 - 2(\frac{y}{x})^2} dxdy=12(xy)21+(xy)2

d y d x = ϕ ( y x ) \frac{dy}{dx} = \phi {(\frac{y}{x})} dxdy=ϕ(xy)

1. u = y x . 1. u = \frac{y}{x}. 1.u=xy.
2. y = x u . 2.y = xu . 2.y=xu.
3. d y d x = u + x d u d x . 3. \frac{dy}{dx} = u + x{\frac{du}{dx}}. 3.dxdy=u+xdxdu.

可化为齐次的方程
d y d x = a x + b y + c a 1 x + b 1 y + c 1 \frac{dy}{dx} = \frac{ax+by+c}{a_1x+b_1y+c_1} dxdy=a1x+b1y+c1ax+by+c

x = X + h
y = Y + k

d Y d X = a X + b Y + a h + b k + c a 1 X + b 1 Y + a 1 h + b 1 k + c 1 \frac{dY}{dX} = \frac{aX+bY + ah + bk + c}{a_1X+b_1Y+ a_1h + b_1k +c_1} dXdY=a1X+b1Y+a1h+b1k+c1aX+bY+ah+bk+c

{ a h + b k + c = 0 a 1 h + b 1 k + c 1 = 0 \begin{cases} ah + bk + c = 0\\ a_1h+b_1k + c_1 = 0\\ \end{cases} {ah+bk+c=0a1h+b1k+c1=0

a 1 a ≠ b 1 b \frac{a_1}{a} \neq \frac{b_1}{b} aa1=bb1

一阶线性微分方程

d y d x + p ( x ) y = Q ( x ) \frac{dy}{dx}+p(x)y=Q(x) dxdy+p(x)y=Q(x)
{ Q ( x ) ≡ 0. 齐 次 , d y y = − p ( x ) d x ⇒ ln ⁡ y = − ∫ p ( x ) d x + c 1 ⇒ y = c e − ∫ p ( x ) d x \begin{cases} Q(x)\equiv0.齐次,\frac{dy}{y}=-p(x)dx\Rightarrow \ln y = - \int {p(x)dx} + c_1 \Rightarrow y = ce^{-\int {p(x)dx}} \end{cases} {Q(x)0.,ydy=p(x)dxlny=p(x)dx+c1y=cep(x)dx

y = e − ∫ p ( x ) d x ( ∫ Q ( x ) e ∫ p ( x ) d x d x + c ) y = e^{-\int {p(x)dx}} (\int {Q(x)} e^{\int {p(x)dx}}dx + c) y=ep(x)dx(Q(x)ep(x)dxdx+c)

伯努利方程
d y d x + p ( x ) y = Q ( x ) y n \frac{dy}{dx}+p(x)y=Q(x)y^n dxdy+p(x)y=Q(x)yn

可降阶的高阶微分方程
y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)

常系数齐次线性微分方程
二阶
y ′ ′ + p y ′ + q y = 0 y^{\prime \prime} + py^{\prime} + qy = 0 y+py+qy=0
r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0
1. Δ = p 2 − 4 q > 0 , y = c 1 e r 1 x + c 2 e r 2 x 1.\Delta = p^2 - 4q > 0 ,y = c_1e^{r^1x}+c_2e^{r_2x} 1.Δ=p24q>0,y=c1er1x+c2er2x
2. Δ = p 2 − 4 q = 0 , y = ( c 1 + c 2 x ) e r 1 x 2.\Delta = p^2 - 4q = 0 ,y = (c_1 + c_2x)e^{r^1x} 2.Δ=p24q=0,y=(c1+c2x)er1x
1. Δ = p 2 − 4 q < 0 , r 1 = α + β i , r 2 = α − β i 1.\Delta = p^2 - 4q < 0 ,r_1 = \alpha + \beta i,r_2 = \alpha - \beta i 1.Δ=p24q<0,r1=α+βi,r2=αβi
y = e α x ( c 1 cos ⁡ β x + c 2 sin ⁡ β x ) y = e^{\alpha x} (c_1\cos \beta x + c_2 \sin \beta x) y=eαx(c1cosβx+c2sinβx)

向量
大小,方向,不管起点
模 长度 ∣ A ⃗ ∣ |\vec A| A
长度等于1 单位向量
长度等于0 零向量

夹角 ( 0 ≤   ≤ π 0 \leq \ \leq \pi 0 π)

平行(共线) 同方向或反方向
a // b

向量的线性运算
1.加法 c = a + b
三角形法则
a+b = b+a
2.减法 b-a=b+(-a)

3. ∣ λ α ∣ = ∣ λ ∣ ∣ α ∣ |\lambda \alpha|=|\lambda||\alpha| λα=λα
( λ + μ ) a = λ a + μ a (\lambda + \mu)a=\lambda a + \mu a (λ+μ)a=λa+μa
λ ( a + b ) = λ a + λ b \lambda(a+b) = \lambda a + \lambda b λ(a+b)=λa+λb
λ ( μ a ) = μ ( λ a ) \lambda(\mu a) = \mu(\lambda a) λ(μa)=μ(λa)

∣ a ∣ a ∣ ∣ = 1 |\cfrac{a}{|a|}| = 1 aa=1

空间直角坐标系
右手系准则

单位向量 i,j,k
r = x i + y j + z k , ( x , y , z ) r=xi+yj+zk,(x,y,z) r=xi+yj+zk,(x,y,z)

向量平行
b = λ a , ⟹ a x b x = a y b y = a z b z b = \lambda a,\Longrightarrow \cfrac{a_x}{b_x} = \cfrac{a_y}{b_y}=\cfrac{a_z}{b_z} b=λa,bxax=byay=bzaz

以向量为元(未知数)的线性方程
{ 5 x − 3 y = a 3 x − 2 y = b \begin{cases} 5x-3y=a\\ 3x-2y=b \end{cases} {5x3y=a3x2y=b
a=(2,1,2),b=(-1,1,-2)
{ x = 2 a − 3 b = ( 7 , − 1 , 10 ) y = 3 a − 5 b = 3 ( 2 , 1 , 2 ) − 5 ( − 1 , 1 , − 2 ) = ( 11 , − 2 , 16 ) \begin{cases} x=2a-3b=(7,-1,10) y=3a-5b=3(2,1,2)-5(-1,1,-2)=(11,-2,16) \end{cases} {x=2a3b=(7,1,10)y=3a5b=3(2,1,2)5(1,1,2)=(11,2,16)

(x,y,z)既可以表示点,也可以表示向量

r=(x,y,z)
∣ r ∣ = x 2 + y 2 + z 2 |r|=\sqrt{x^2+y^2+z^2} r=x2+y2+z2

两点距离公式
∣ A B ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 |AB| =\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2} AB=(x1x2)2+(y1y2)2+(z1z2)2

A B → = O B → − O A → \overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} AB =OB OA

方向角、方向余弦
方向余弦
O M → = r = ( x , y , z ) \overrightarrow {OM}=r=(x,y,z) OM =r=(x,y,z)
cos ⁡ α = x ∣ r ∣ \cos \alpha = \cfrac{x}{|r|} cosα=rx
cos ⁡ β = y ∣ r ∣ \cos \beta= \cfrac{y}{|r|} cosβ=ry
cos ⁡ γ = z ∣ r ∣ \cos \gamma= \cfrac{z}{|r|} cosγ=rz
( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) = ( x ∣ r ∣ , y ∣ r ∣ , z ∣ r ∣ ) = 1 ∣ r ∣ r = e r (\cos \alpha,\cos \beta,\cos \gamma)=( \cfrac{x}{|r|},\cfrac{y}{|r|},\cfrac{z}{|r|})= \cfrac{1}{|r|} r=e_r (cosα,cosβ,cosγ)=(rx,ry,rz)=r1r=er

同方向的单位向量

cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = 1 \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =1 cos2α+cos2β+cos2γ=1

投影

数量积(判断垂直)
a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ = ∣ a ∣ P r j a b = ∣ b ∣ P r i b a a \cdot b = |a||b|\cos \theta=|a|P_{rj_a}b=|b|P_{ri_b}a ab=abcosθ=aPrjab=bPriba

1. a ⋅ b = b ⋅ a a \cdot b = b \cdot a ab=ba
2. ( a + b ) ⋅ c = a ⋅ c + b ⋅ c (a+b)\cdot c = a \cdot c + b \cdot c (a+b)c=ac+bc
3. ( λ a ) ⋅ b = λ ( a ⋅ b ) (\lambda a)\cdot b=\lambda (a \cdot b) (λa)b=λ(ab)
a ⋅ ( λ b ) = λ ( a ⋅ b ) a \cdot (\lambda b) = \lambda (a \cdot b) a(λb)=λ(ab)
( λ a ) ⋅ ( μ b ) = λ μ ( a ⋅ b ) (\lambda a)\cdot(\mu b)=\lambda \mu (a \cdot b) (λa)(μb)=λμ(ab)

余弦定理
c 2 = a 2 + b 2 − 2 a b cos ⁡ θ c^2 = a^2 + b^2 - 2ab\cos \theta c2=a2+b22abcosθ

向量积(判断平行)
a,b两向量
c = a × b c = a \times b c=a×b
c的模 ∣ c ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ θ |c| = |a||b|\sin \theta c=absinθ
c的方向: 右手从a向b

1. a × a = 0 a \times a = 0 a×a=0
2.非零向量a,b. a × b = 0 a \times b = 0 a×b=0 ,a //b

1. b × a = − a × b b \times a = - a \times b b×a=a×b
2. ( a + b ) × c = a × c + b × c (a+b) \times c=a \times c + b \times c (a+b)×c=a×c+b×c
3. ( λ a ) × b = a × ( λ b ) (\lambda a)\times b=a \times (\lambda b) (λa)×b=a×(λb)

例: a = (2,1,-1) , b = (1,-1,2)
a × b = ∣ i j k 2 1 − 1 1 − 1 2 ∣ = i − 5 j − 3 k a \times b = \begin{vmatrix} i & j & k\\ 2 & 1 & -1\\ 1 & -1 & 2 \end{vmatrix}=i-5j-3k a×b=i21j11k12=i5j3k

平面及方程
曲面:点 线 面 体
F(x,y,z) = 0
曲线

平面:法线向量
M 0 = ( x 0 , y 0 , z 0 ) , 法 线 向 量 n = ( A , B , C ) M_0=(x_0,y_0,z_0) ,法线向量n = (A,B,C) M0=(x0,y0,z0),线n=(A,B,C)
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x0)+B(y-y0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
点法式

平面一般方程
Ax+By+Cz + D = 0
带入解方程

1.D = 0,过原点
2.A = 0,
3.A=B=0

平面的截距式方程
x a + y b + z c = 1 \cfrac{x}{a} + \cfrac{y}{b} + \cfrac{z}{c} = 1 ax+by+cz=1

两平面的夹角(法线的夹角)
取锐角部分

cos ⁡ θ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \cos \theta = \cfrac{|A_1A_2+B_1B_2+C_1C_2|}{\sqrt{A_1^2+B_1^2+C_1^2} \sqrt{A_2^2+B_2^2+C_2^2} } cosθ=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2

{ 1. 垂 直 . A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 2. 平 行 或 重 合 . A 1 A 2 = B 1 B 2 = C 1 C 2 \begin{cases} 1.垂直. \quad A_1A_2+B_1B_2+C_1C_2 = 0\\ 2.平行或重合.\quad \cfrac{A_1}{A_2}=\cfrac{B_1}{B_2}=\cfrac{C_1}{C_2} \end{cases} 1..A1A2+B1B2+C1C2=02..A2A1=B2B1=C2C1

空间直线及其方程
1.一般方程
{ A 1 x + B 1 y + C 1 z + D = 0 A 2 x + B 2 y + C 2 z + D = 0 \begin{cases} A_1x+B_1y+C_1z+D=0\\ A_2x+B_2y+C_2z+D=0 \end{cases} {A1x+B1y+C1z+D=0A2x+B2y+C2z+D=0
2.对称式方程,参数式方程
方向向量

两直线的夹角(方向向量的夹角)

直线与平面的夹角(直线与投影的夹角)

空间曲线及其方程
一般方程
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0

参数方程
{ x = x ( t ) y = y ( y ) z = z ( t ) \begin{cases} x=x(t)\\ y=y(y)\\ z=z(t) \end{cases} x=x(t)y=y(y)z=z(t)

空间曲线在坐标面上投影

旋转曲面
母线,轴

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值