线性代数

n阶行列式

第一种定义(按行展开) : 行标 取自然排列,  列标取所有可能,不同行不同列取n个元素相乘。符号由
列标排列的 逆序数的奇偶性决定。
第二种定义(按列展开):类似第一种。
第三种定义(既不按行也不按列):符号由 行标排列和列标排列的 逆序数的奇偶性决定。

行列式性质

转置 原来的行变成列 列变成行

D T D^T DT
(对行成立的性质,对列也成立)
性质1.
D T = D D^T = D DT=D
性质2.
两行互换,值变号。(两行或者两列对应相等 行列式的值为0)
性质4.
某一行都乘以k。等于用k乘以D.(推论:某一行都有公因子,k可以提到外面)
∣ 1 2 3 4 k 5 k 6 k 7 8 9 ∣ = k ∣ 1 2 3 4 5 6 7 8 9 ∣ \begin{vmatrix} 1 & 2 & 3\\ 4k & 5k & 6k \\ 7 & 8 & 9 \end{vmatrix} = k\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6\\ 7 & 8 & 9\end{vmatrix} 14k725k836k9=k147258369

行列式的所有元素,均有公因子k,k外提n次。

性质5. 两行对应成比例 D = 0(推论:某一行全为0,D = 0)
性质6. 是和的那一行分开,其余行不变

∣ 1 2 3 2 + 7 8 + 5 9 + 10 4 5 6 ∣ = ∣ 1 2 3 2 8 9 4 5 6 ∣ + ∣ 1 2 3 7 5 10 4 5 6 ∣ \begin{vmatrix} 1 & 2 & 3\\ 2+7 & 8+5 & 9+10 \\ 4 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 8 & 9\\ 4 & 5 & 6\end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 \\ 7 & 5 & 10\\ 4 & 5 & 6\end{vmatrix} 12+7428+5539+106=124285396+1742553106

性质7.某一行乘以一个数,加到另一行上去,D不变
1.先处理第一列,再第二列,...
2.第一列处理完后,不再参与运算
3.某一行乘以x,加到第几行去

余子式
指定某个元素,去掉所在行 和 列,剩余元素 按原来排列好。
M 32 M_{32} M32

代数余子式(多了个符号)
A 32 = ( − 1 ) ( 3 + 2 ) ∣ . . . ∣ A_{32} = (-1)^{(3+2)}|...| A32=(1)(3+2)...

定理(按某行展开)
D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D = a_{i1}A_{i1} + a_{i2}A_{i2} + ...+a_{in}A_{in} D=ai1Ai1+ai2Ai2+...+ainAin

定理(异乘变零定理)
某一行元素与另一行元素的代数余子式之和 = 0

拉普拉斯定理
k阶子式(取m行,取m列,相交的部分)
k阶余子式(剩下的部分)
k阶代数余子式(加符号 第几行第几列 相加)

取定k行,由k行元素组成的所有k阶子式与代数余子式乘积之和=D

说明
∣ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∣ 4 \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \\ \end{vmatrix}_4 159132610143711154812164

假设取 第1,2行 1,2列
那么
∣ 1 2 5 6 ∣ 2 就 是 子 式 \begin{vmatrix} 1 & 2\\ 5 & 6 \end{vmatrix}_2就是子式 15262

∣ 11 12 15 16 ∣ 2 就 是 余 子 式 \begin{vmatrix} 11 & 12\\ 15 & 16 \end{vmatrix}_2就是余子式 111512162
( − 1 ) 1 + 2 + 1 + 2 ∣ 11 12 15 16 ∣ 2 就 是 代 数 余 子 式 (-1)^{1+2+1+2}\begin{vmatrix} 11 & 12\\ 15 & 16 \end{vmatrix}_2就是代数余子式 (1)1+2+1+2111512162
行列式计算
加边法
1.加一行,加一列

范德蒙德行列式
∣ 1 1 1 ⋯ 1 x 1 x 2 x 3 ⋯ x n ⋮ ⋮ ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 x 3 n − 1 ⋯ x n n − 1 ∣ n = ∏ 1 ≤ j < i ≤ n ( x i − x j ) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots &\vdots &\vdots &\vdots &\\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix}_n = \prod \limits_{1\leq j <i \leq n}(x_i-xj) 1x1x1n11x2x2n11x3x3n11xnxnn1n=1j<in(xixj)

反对称行列式
a i j = − a j i a_{ij} = -a_{ji} aij=aji
1.主对角线为0
2.上下位置成相反数

∣ 0 1 2 3 − 1 0 − 5 6 − 2 5 0 − 8 − 3 − 6 8 0 ∣ 4 \begin{vmatrix} 0 & 1 & 2 & 3 \\ -1 &0 &-5 &6 \\ -2 &5 &0 &-8\\ -3 &-6& 8& 0 \end{vmatrix}_4 01231056250836804
奇数阶 D = 0

对称行列式
a i j = a j i a_{ij} = a_{ji} aij=aji

 1.主对角线没有要求
 2.上下位置相等

克莱姆法则
x 1 + x 2 + x 3 = 1 x 1 − x 2 + 5 x 3 = 6 − x 1 + x 2 + 6 x 3 = 9 x_1 + x_2 + x_3 = 1\\ x_1 - x_2 + 5x_3 = 6\\ -x_1 + x_2 + 6x_3 = 9 x1+x2+x3=1x1x2+5x3=6x1+x2+6x3=9

D = ∣ 1 1 1 1 − 1 5 − 1 1 6 ∣ D 1 = ∣ 1 1 1 6 − 1 5 9 1 6 ∣ D 2 = ∣ 1 1 1 1 6 5 − 1 9 6 ∣ D 3 = ∣ 1 1 1 1 − 1 6 − 1 1 9 ∣ D= \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 5 \\ -1 & 1 & 6 \end{vmatrix} D_1= \begin{vmatrix} 1 & 1 & 1 \\ 6 & -1 & 5 \\ 9 & 1 & 6 \end{vmatrix} D_2= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 6 & 5 \\ -1 & 9 & 6 \end{vmatrix} D_3= \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 6 \\ -1 & 1 & 9 \end{vmatrix} D=111111156D1=169111156D2=111169156D3=111111169

1. n 个 方 程 , n 个 未 知 量 , D ≠ 0 , x j = D j D 1.n个方程, n个未知量, D \neq 0, x_j = \frac{D_j}{D} 1.n,n,D=0,xj=DDj
齐次方程组 ,右边都等于0,至少有零解

矩阵
单位阵(主对角线全为1,其他为0,且为方阵)。
零矩阵(全都是零)

加法,减法(同型),对应元素相加减
( 1 2 3 4 5 6 ) + ( 4 5 6 7 8 9 ) = ( 5 7 9 11 13 15 ) \left( \begin{array}{lcr} 1 & 2 & 3\\ 4 & 5 & 6 \end{array}\right)+\left( \begin{array}{lcr} 4&5&6\\ 7&8&9 \end{array}\right)=\left( \begin{array}{lcr} 5&7&9\\ 11&13&15 \end{array}\right) (142536)+(475869)=(511713915)
数乘
k ( 1 2 3 4 5 6 7 8 9 ) = ( k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k ) k\left(\begin{array}{lcr} 1 &2&3\\ 4&5&6\\ 7&8&9 \end{array}\right)=\left(\begin{array}{lcr} k &2k&3k\\ 4k&5k&6k\\ 7k&8k&9k \end{array}\right) k147258369=k4k7k2k5k8k3k6k9k
行列式是只提取一行,而矩阵提取所有。

乘法
一行和列对应相乘再相加,得到aij的值

条件:第一个矩阵的列 = 第二个矩阵的行数
结果行数= 第一个矩阵的列数
结果列数=第二个的列数

七字诀

中间相等取两头

( 2 1 0 1 0 1 ) ( 1 0 1 0 1 1 0 1 1 ) = ( 2 1 3 1 1 2 ) \left(\begin{array}{lcr} 2 &1&0\\ 1&0&1 \end{array}\right)\left(\begin{array}{lcr} 1 &0&1\\ 0&1&1\\ 0&1&1 \end{array}\right)=\left(\begin{array}{lcr} 2 &1&3\\ 1&1&2 \end{array}\right) (211001)100011111=(211132)

1.结合性:(AB)C = A(BC).
2.分配:(A+B)C=AC + BC.
3.k(AB) = (kA)B = A(kB).

AB = BA
A B 可交换(必须是方阵)
A k 1 A k 2 = A k 1 + k 2 A^{k_1}A^{k_2}=A^{k_1+k_2} Ak1Ak2=Ak1+k2
( A k 1 ) k 2 = A k 1 k 2 {(A^{k_1})}^{k2}=A^{k_1k_2} (Ak1)k2=Ak1k2

矩阵的转置
A T A^T AT
转置的性质
( A T ) T = A (A^T)^T=A (AT)T=A
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

特殊矩阵(方阵)
1.数量矩阵
( a a ⋱ a ) = a E \left(\begin{array}{lcr} a\\ &a\\ &&\ddots\\ &&&a \end{array}\right)=aE aaa=aE

2.对角形
( a 1 a 2 ⋱ a n ) = d i a g ( a 1 , a 2 , … , a n ) \left(\begin{array}{lcr} a_1\\ &a_2\\ &&\ddots\\ &&&a_n \end{array}\right)=diag(a_1,a_2,\dots,a_n) a1a2an=diag(a1,a2,,an)

3.上,下三角形,主对角线下面(上面)全是零.

4.对称
a i j = a j i a_{ij} = a_{ji} aij=aji
A T = A A^T = A AT=A
定理:A.B对称,AB对称 ⇔ A,B可交换

5.反对称(主对角线全为零)
a i j = − a j i a_{ij}=-a{ji} aij=aji

逆矩阵
不要把矩阵放在分母上
A ∗ B = B ∗ A = E A * B = B * A = E AB=BA=E

方阵的行列式
A = ( 2 2 2 3 3 3 1 1 1 ) A = \left( \begin{array}{lcr} 2&2&2\\ 3&3&3\\ 1&1&1 \end{array} \right) A=231231231
∣ A ∣ = ∣ 2 2 2 3 3 3 1 1 1 ∣ |A| = \begin{vmatrix} 2&2&2\\ 3&3&3\\ 1&1&1 \end{vmatrix} A=231231231
性质
1. ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
2. ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
3. ∣ A B ∣ = ∣ A ∣ ∗ ∣ B ∣ |AB|=|A|*|B| AB=AB

伴随矩阵(只有方阵有)
按行求按列放
1.求所有元素的代数余子式
2.按行求的代数余子式按列放构成伴随矩阵
A ∗ A^* A

定理
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A*A=|A|E AA=AA=AE
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*| = |A|^{n-1} A=An1

逆矩阵:A n阶方阵,存在同阶方阵B,使得 AB = BA = E
A − 1 = B A^{-1} = B A1=B
1.不是所有方阵均可逆。0 0B=B0=0
2.若可逆,逆矩阵唯一。

1.如何判断可逆
2. A − 1 = ? A^{-1} = ? A1=?
∣ A ∣ ≠ 0. 非 奇 异 , 非 退 化 , 满 秩 , 可 逆 |A| \neq 0.非奇异,非退化,满秩,可逆 A=0.退

定理: A 可逆的充要条件 ∣ A ∣ ≠ 0. A − 1 = 1 ∣ A ∣ A ∗ |A| \neq 0. A^{-1} = \frac{1}{|A|}A^* A=0.A1=A1A

推论: A 是n阶方阵 ,B 是n阶方阵 . AB = E(BA = E) A可逆。 A − 1 = B A^{-1} = B A1=B

A − 1 A_{-1} A1
1.伴随矩阵法
2.初等变换法

矩阵方程
A = ( 4 2 3 1 1 0 − 1 2 3 ) A=\left(\begin{array}{lcr} 4&2&3\\ 1&1&0\\ -1&2&3 \end{array}\right) A=411212303

A x = A + 2 x Ax = A + 2x Ax=A+2x
注意顺序,AB 和 BA 不一定相等
1. ( A − 2 E ) x = A (A-2E)x=A (A2E)x=A
∣ A − 2 E ∣ ≠ 0 |A-2E|\neq 0 A2E=0 可逆
2. ( A − 2 E ) − 1 ( A − 2 E ) x = ( A − 2 E ) − 1 A (A-2E)^{-1}(A-2E)x=(A-2E)^{-1}A (A2E)1(A2E)x=(A2E)1A

性质:
1.A可逆 , A − 1 A^{-1} A1可逆. ( A − 1 ) − 1 = A {(A^{-1})}^{-1} = A (A1)1=A

2.AB均可逆, ( A B ) − 1 = B − 1 A − 1 {(AB)^{-1}}=B^{-1}A^{-1} (AB)1=B1A1

3.A可逆 , A T A^T AT可逆, ( A T ) − 1 = ( A − 1 ) T {(A^{T})}^{-1}={(A^{-1})}^T (AT)1=(A1)T, k ≠ 0 ( k A ) − 1 = 1 k A − 1 k \neq 0 {(kA)^{-1}}=\frac{1}{k}A^{-1} k=0(kA)1=k1A1

4.A可逆. ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}|=|A|^{-1} A1=A1

5.A可逆. A ∗ 可 逆 . ( A ∗ ) − 1 = 1 ∣ A ∣ A A^*可逆. (A^*)^{-1} = \frac{1}{|A|} A A.(A)1=A1A

A ∗ A^* A
1.按行求,按列放。

2. A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

3. ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1

4. A − 1 = 1 ∣ A ∣ A ∗ A^{-1} = \frac{1}{|A|}A^* A1=A1A, A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1

5. ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A

分块矩阵
要求:横线、竖线 到头
按行分,按列分

标准形
从左上角开始的一串1(不断)
( 1 ⋱ 1 0 ⋱ 0 ) m ∗ n = ( E r 0 r ∗ ( n − r ) 0 ( m − r ) ∗ r 0 ( m − r ) ∗ ( n − r ) ) \left(\begin{array}{lcr} 1&\\ &\ddots\\ &&1\\ &&&0 \\ &&&&\ddots\\ &&&&&0 \end{array}\right)_{m*n} = \left(\begin{array}{lcr} E_r &0_{r*(n-r)}\\ 0_{(m-r)*r} & 0_{(m-r) * (n-r)} \end{array}\right) 1100mn=(Er0(mr)r0r(nr)0(mr)(nr))

1.分块加法 (同型)
( A 1 A 2 A 3 A 4 ) + ( B 1 B 2 B 3 B 4 ) = ( A 1 + B 1 A 2 + B 2 A 3 + B 3 A 4 + B 4 ) \left(\begin{array}{lcr} A_1 & A_2\\ A_3&A_4 \end{array}\right) + \left(\begin{array}{lcr} B_1&B_2\\ B_3 & B_4 \end{array}\right) = \left(\begin{array}{lcr} A_1 + B_1 & A_2 + B_2\\ A_3 + B_3 & A_4 + B_4 \end{array}\right) (A1A3A2A4)+(B1B3B2B4)=(A1+B1A3+B3A2+B2A4+B4)

2.数乘
k ( A 1 A 2 A 3 A 4 ) = ( k A 1 k A 2 k A 3 k A 4 ) k\left(\begin{array}{lcr} A_1 & A_2\\ A_3 & A_4 \end{array}\right) = \left(\begin{array}{lcr} kA_1 & kA_2\\ kA_3 & kA_4 \end{array}\right) k(A1A3A2A4)=(kA1kA3kA2kA4)

3.乘法
( A 1 A 2 A 3 A 4 ) ( B 1 B 2 B 3 B 4 ) = ( A 1 B 1 + A 2 B 3 A 1 B 2 + A 2 B 4 A 3 B 1 + A 4 B 3 A 3 B 2 + A 4 B 4 ) \left(\begin{array}{lcr} A_1 & A_2\\ A_3&A_4 \end{array}\right) \left(\begin{array}{lcr} B_1&B_2\\ B_3 & B_4 \end{array}\right) = \left(\begin{array}{lcr} A_1B_1 + A_2B_3 & A_1B_2 + A_2B_4\\ A_3 B_1 + A_4B_3 & A_3B_2 + A_4B_4 \end{array}\right) (A1A3A2A4)(B1B3B2B4)=(A1B1+A2B3A3B1+A4B3A1B2+A2B4A3B2+A4B4)

对角形分块矩阵
( A 1 A 2 ⋱ A n ) \left(\begin{array}{lcr} A_1\\ &A_2\\ &&\ddots\\ &&&A_n \end{array}\right) A1A2An

分块转置矩阵
A = ( A 1 A 2 A 3 A 4 A 5 A 6 ) A = \left(\begin{array}{lcr} A_1 & A_2 &A_3\\ A_4 & A_5 & A_6 \end{array}\right) A=(A1A4A2A5A3A6)
A T = ( A 1 T A 4 T A 2 T A 5 T A 3 T A 6 T ) A^T = \left(\begin{array}{lcr} A_1^T & A_4^T \\ A_2^T & A_5^T \\ A_3^T & A_6^T \end{array}\right) AT=A1TA2TA3TA4TA5TA6T
1.把子块当做元素,求转置
2.对每个子块求转置

H = ( A C 0 B ) H = \left(\begin{array}{lcr} A & C\\ 0 & B \end{array}\right) H=(A0CB)
A,B m阶 n阶 可逆

H − 1 = ( A − 1 − A − 1 C B − 1 0 B − 1 ) H^{-1} = \left(\begin{array}{lcr} A^{-1} & -A^{-1}CB^{-1}\\ 0 & B^{-1} \end{array}\right) H1=(A10A1CB1B1)

( A 1 A 2 ⋱ A n ) − 1 = ( A 1 − 1 A 2 − 1 ⋱ A n − 1 ) \left(\begin{array}{lcr} A_1 \\ & A_2\\ &&\ddots\\ &&&A_n \end{array}\right) ^{-1} = \left(\begin{array}{lcr} A_1^{-1} \\ & A_2^{-1}\\ &&\ddots\\ &&&A_n^{-1} \end{array}\right) A1A2An1=A11A21An1

初等变换
和行列式区别开

初 等 行 变 换 { 交 换 两 行 用 k ( k ≠ 0 ) 乘 某 一 行 某 一 行 的 t 倍 加 到 另 一 行 上 去 初等行变换\left \{ \begin{array}{c} 交换两行\\ 用k(k \neq 0) 乘某一行\\ 某一行的t倍加到另一行上去 \end{array}\right. k(k=0)t

定理1:任给一个矩阵 都可通过初等变换化为标准形

等价: A 经过初等变换得到B,
1.反射性: A ⟺ \Longleftrightarrow A
2.对称性 : A ⟺ \Longleftrightarrow B ->B ⟺ \Longleftrightarrow A
3.传递性:A ⟺ \Longleftrightarrow B ,B ⟺ \Longleftrightarrow C ->A ⟺ \Longleftrightarrow C
任意矩阵都 等价于 标准形

初等方阵
对E做一次初等变换得到的矩阵

1.交换两行. E ( i , j ) E(i,j) E(i,j)
2.用K(k != 0) 乘某行. E ( i ( k ) ) E(i(k)) E(i(k))
3.某行l被加到另一行. E ( i , j ( k ) ) E(i,j(k)) E(i,j(k))

行列式的值不等0 矩阵可逆
初等方阵均可逆

初等左(右)乘想当于对A 实施第i种行(列)变换。

左乘 == 行
右乘 == 列

定理3: 任意A 存在初等矩阵 P 1 , P 2 , … , P s , A , Q 1 , Q 2 , … , Q t P_1,P_2,\dots,P_s ,A ,Q_1,Q_2,\dots,Q_t P1,P2,,Ps,A,Q1,Q2,,Qt为标准形
推论1:A,B等价存在可逆矩阵 P,Q . PAQ = B

定理4: A可逆 ⟺ \Longleftrightarrow A的标准形为E
定理5:A可逆 ⟺ A = P 1 P 2 … P s \Longleftrightarrow A=P_1P_2\dots P_s A=P1P2Ps

初等变换求逆矩阵

初等行变换法
( A , E ) ( E , A − 1 ) (A,E) (E,A^{-1}) (A,E)(E,A1)

矩阵的秩
k阶子式

非零子式的最高阶数: 秩
r(0) = 0
1. A m ∗ n , 0 ≤ r ( A ) ≤ m i n { m , n } 1.A_{m*n}, 0 \leq r(A) \leq min\{m,n\} 1.Amn,0r(A)min{m,n}
满 秩 { 1. 若 r ( A ) = m , 取 所 有 行 , 行 满 秩 2. r ( A ) = n , 取 所 有 列 , 列 满 秩 满秩\begin{cases} 1.若r(A) = m,取所有行,行满秩\\ 2.r(A) = n,取所有列,列满秩 \end{cases} {1.r(A)=m,,2.r(A)=n,,
r(A) < min{m,n} 降秩
A是方阵,A满秩 == A可逆

定理1: r(A) = r 有一个r阶子式不为0, 所有r+1阶为0

阶梯形:
1.若有零行。零行在非零行下面
2.左起首非零元素。左边零的个数随行数增加而严格增加

行简化阶梯形:
是阶梯
1.非零行首非零元是1
2.首非零元所在列的其余元素为0

1.折线判断阶梯
2.标记首非零元素
3.首非零元素列, 除 首非零元 都为零

r(A) = 非零行的行数
初等变换不改变矩阵的秩

性质1:
r ( A ) = r ( A T ) r(A) = r(A^T) r(A)=r(AT)

性质2:
矩阵乘以可逆矩阵,秩不变
A m ∗ n . P m 阶 可 逆 , Q n 阶 可 逆 方 阵 A_{m*n}.P m阶可逆 ,Q n阶可逆方阵 Amn.Pm,Qn
r(A) = r(PA) = r(AQ) = r(PAQ)

向量
n个分量
n 个 数 a 1 , … , a n 组 成 的 有 序 数 组 ( a 1 , a 2 , … , a n ) n个数a_1,\dots,a_n组成的有序数组(a_1,a_2,\dots,a_n) na1,,an(a1,a2,,an)
维数

行向量 (写作行)
列向量(写作列)

k α = 0 ⟹ k = 0   o r   α = 0 k\alpha=0 \Longrightarrow k=0 \ or \ \alpha = 0 kα=0k=0 or α=0

同维向量

向量间的线性关系
某些个向量表示一个向量

线性组合: β , α 1 , ⋯   , α n \beta ,\alpha_1,\cdots,\alpha_n β,α1,,αn,是m维向量
若存在 k 1 , ⋯   , k n k_1,\cdots,k_n k1,,kn使得
β = k 1 α 1 + ⋯ + k n α n \beta = k_1\alpha_1 + \cdots + k_n\alpha_n β=k1α1++knαn,成立
β 是 α 的 线 性 组 合 \beta 是 \alpha 的线性组合 βα线,系数可以全取0
组合系数

1.零向量可由任意向量组表示
2.向量组中任一向量,可由向量组表示
3.任一向量可由 ( 1 , 0 , ⋯   , 0 ) , ( 0 , 1 , ⋯   , 0 ) , ⋯   , ( 0 , 0 , ⋯   , 1 ) (1,0,\cdots,0),(0,1,\cdots,0),\cdots,(0,0,\cdots,1) (1,0,,0),(0,1,,0),,(0,0,,1)表示

向量组的等价
同维,两个向量组可以相互表示

1.反射性
2.对称性
3.传递性

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值