标签分布学习相关研究

1 标记增强及标签分布学习

https://mp.weixin.qq.com/s/cXiR-UeJkcdkljJvE2eERw
http://palm.seu.edu.cn/xgeng/files/sc-info18.pdf
https://baijiahao.baidu.com/s?id=1687693358774525583&wfr=spider&for=pc
https://blog.csdn.net/weixin_42001089/article/details/113976181

2 我们已有的工作

COS-LDL: Label Distribution Learning by Cosine-Based Distance-Mapping Correlation
三角距离相关性的标签分布学习
融合标签结构依赖性的标签分布学习
李桂林的工作:探索标签和特征之间的因果关系
白润婷的工作:探索样本之间的相关性
容斌元的工作:(1)基于协方差的标签相关性
(2)基于深度学习的标签分布学习
樊俊的工作:基于热传导来计算聚类后同一簇样本标签之间的共有特征 Y Y Y。然后考虑共有特性 Y Y Y和独有特性 L L L对标签增强的影响,公式如下:
W = α Y + ( 1 − α ) L W = \alpha Y + (1 - \alpha)L W=αY+(1α)L
在讨论过程中,我建议将公式改为:
W = α Y + ( 1 − α ) W W = \alpha Y + (1 - \alpha)W W=αY+(1α)W
李鹏程的工作:基于资源传导,利用样本的多标签信息,计算标签之间的转移矩阵 P P P,再利用转移矩阵进行标签增强。
D ( t ) = α P D ( t − 1 ) + ( 1 − α ) L D^{(t)}=\alpha PD^{(t-1)}+(1-\alpha)L D(t)=αPD(t1)+(1α)L
熊炎雯的工作:???
陈源的工作:???

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HenrySmale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值