连续型概率分布——正态分布(一维)

今天想总结一下正太分布,但是如果按照维基百科上面的讲法,就太过复杂了,所以这里着重讲正态分布在实际生活中的作用以及简单的计算方法,也就是高中所学过的关于正态分布的知识。

在正式开始之前,还是把维基百科上面的科普拎出来过一遍

正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

1. 正态分布的定义

如果对于任何实数a<b,随机变量X满足:

      

则称X的分布为正态分布。


正态分布由参数μ、σ唯一确定,μ、σ分别表示总体的平均数和标准差。正太分布记作N(μ, σ²). 其中图像称为正太曲线。

如果随机变量X服从正态分布,则记作:

X~N(μ, σ²)。(EX=μ  DX=σ)


2. 正态曲线的性质

具有两头低、中间高、左右对称的基本特征

(1)曲线在x轴的上方,与x轴不相交。

(2)曲线是单峰的,它关于直线x=μ对称。

(3)曲线在x=μ处达到峰值

(4)曲线与x轴之间的面积为1.

(5)方差相等、平均数不等的正态分布图示


(6)平均数相等、方差不等的正态分布图示

σ越大,曲线越“矮胖”,表示总体的分布越分散;

σ越小,曲线越“瘦高”,表示总体的分布越集中。

(7)正态曲线下的概率规律(*)

  • 对称区域面积相等

3. 特殊区间的概率:

若X~N(μ, σ²),则对于任何实数a>0, 概率

特别地有(熟记)

我们从上图看到,正态总体在(μ-2σ,μ+2σ)以外取值的概率只有4.6%,在(μ-3σ, μ+3σ)以外取值的概率只有0.3%。

由于这些概率值很小(一般不超过5%),通常称这些情况发生为小概率时间。

实际运用中就只考虑这个区间,称为3σ原则。


4. 应用举例

例1: 若X~N(5,1), 求P(6<X<7)。

解:μ=5,σ=1

      正态总体在(3,7)的区间内取值的概率为0.954

      正态总体在(4,6)区间内取值的概率为0.683

      P(6<X<7) = (0.954-0.683)/2 = 0.1355


例2:在某次数学考试中,考生的成绩ξ服从一个正态分布,及ξ~N(90,100)。

(1)试求考试成绩ξ位于区间(70,110)上的概率是多少? 0.954

(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)见的考生大约有多少人?

      解: 0.683*2000 = 1366


这里主要讲的是一维正态分布,接下来会讲一下二维正态分布。





### MATLAB 中生成符合正态分布的整数随机数 为了在 MATLAB 中生成符合正态分布的整数随机数,可以先利用 `randn` 函数生成浮点型的标准正态分布数据,再通过四舍五入或其他方法将其转换为整数值。需要注意的是,由于正态分布本身是连续性的,在某些情况下可能得到非常低频甚至不可能出现的大负数或大正数。 下面是一个具体的实现方式: ```matlab mu = 50; % 设定期望值 sigma = 10; % 设定标准差 num_samples = 1000; % 需要生成的数据量 % 使用 randn() 生成满足特定均值和方差条件下的正态分布样本,并取最近的整数 data = round(randn(1, num_samples) * sigma + mu); % 如果希望限定范围内的整数,则可以通过 min 和 max 来裁剪超出界限的结果 lower_bound = 20; upper_bound = 80; data_clipped = max(min(data, upper_bound), lower_bound); ``` 上述代码片段展示了如何创建具有给定平均值 (`mu`) 和标准偏差 (`sigma`)一维向量 `data`,其中包含了按照正态分布规律产生的近似整数值[^1]。此外还介绍了当需要限制这些整数位于某两个边界之内时的操作方法——即使用 `min()` 和 `max()` 函数来确保最终获得的所有整数都在指定范围内[^4]。 对于绘图部分,如果想要直观展示所生成的数据分布情况,可以继续添加如下命令以构建直方图: ```matlab figure(); histogram(data_clipped,'Normalization','probability'); title('Histogram of Clipped Normal Distributed Integer Data'); xlabel('Value'); ylabel('Probability Density'); grid on; ``` 这段附加代码会打开一个新的图形窗口并显示一个表示经过截断处理后的正态分布整数数据的概率密度直方图[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值