连续型概率分布——正态分布(一维)

今天想总结一下正太分布,但是如果按照维基百科上面的讲法,就太过复杂了,所以这里着重讲正态分布在实际生活中的作用以及简单的计算方法,也就是高中所学过的关于正态分布的知识。

在正式开始之前,还是把维基百科上面的科普拎出来过一遍

正态分布又名高斯分布,是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

1. 正态分布的定义

如果对于任何实数a<b,随机变量X满足:

      

则称X的分布为正态分布。


正态分布由参数μ、σ唯一确定,μ、σ分别表示总体的平均数和标准差。正太分布记作N(μ, σ²). 其中图像称为正太曲线。

如果随机变量X服从正态分布,则记作:

X~N(μ, σ²)。(EX=μ  DX=σ)


2. 正态曲线的性质

具有两头低、中间高、左右对称的基本特征

(1)曲线在x轴的上方,与x轴不相交。

(2)曲线是单峰的,它关于直线x=μ对称。

(3)曲线在x=μ处达到峰值

(4)曲线与x轴之间的面积为1.

(5)方差相等、平均数不等的正态分布图示


(6)平均数相等、方差不等的正态分布图示

σ越大,曲线越“矮胖”,表示总体的分布越分散;

σ越小,曲线越“瘦高”,表示总体的分布越集中。

(7)正态曲线下的概率规律(*)

  • 对称区域面积相等

3. 特殊区间的概率:

若X~N(μ, σ²),则对于任何实数a>0, 概率

特别地有(熟记)

我们从上图看到,正态总体在(μ-2σ,μ+2σ)以外取值的概率只有4.6%,在(μ-3σ, μ+3σ)以外取值的概率只有0.3%。

由于这些概率值很小(一般不超过5%),通常称这些情况发生为小概率时间。

实际运用中就只考虑这个区间,称为3σ原则。


4. 应用举例

例1: 若X~N(5,1), 求P(6<X<7)。

解:μ=5,σ=1

      正态总体在(3,7)的区间内取值的概率为0.954

      正态总体在(4,6)区间内取值的概率为0.683

      P(6<X<7) = (0.954-0.683)/2 = 0.1355


例2:在某次数学考试中,考生的成绩ξ服从一个正态分布,及ξ~N(90,100)。

(1)试求考试成绩ξ位于区间(70,110)上的概率是多少? 0.954

(2)若这次考试共有2000名考生,试估计考试成绩在(80,100)见的考生大约有多少人?

      解: 0.683*2000 = 1366


这里主要讲的是一维正态分布,接下来会讲一下二维正态分布。





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值