连续型概率分布——正态分布(二维)

1. 定义:设二维连续型随机变量(X,Y)的联合概率密度为

其中μ1,μ2,σ1,σ2,ρ均为常数,且σ1>0, σ2>0, |ρ|<1则称(X,Y)服从参数为μ1,μ2,σ1,σ2,ρ的二维正态分布。

记作(X,Y)~N(μ1,μ2,σ1²,σ2²,ρ)

二维正态分布的密度函数如下图

显然f(x,y)>=0

可以验证

2. 关于二维正态分布,需掌握如下结论:

(1)二维正态分布的两个边缘分布均为一维正态分布。

即由(X,Y)~N(μ1,μ2,σ1²,σ2²,ρ)可得X~N(μ1,σ1²),Y~N(μ2,σ2²)。

证明:略

(2)若(X,Y)服从二维正态分布,则X与Y相互独立的充要条件为X与Y的相关系数ρ等于零(即不相关)。

独立和不相关的关系:独立一定不相关,不相关不一定独立。

但是,对于二维正态分布:独立=不相关

 

例题:设二维随机变量(X,Y)~N(1,0,3²,4²,-0.5),令Z=X/3+Y/2,求EZ,DZ以及ρxz.

答案:略

 

(3)设(X,Y)~N(μ1,μ2,σ1²,σ2²,ρ),则X与Y的非零线性组合aX+bY仍然服从正态分布,且

aX+bY ~N(aμ1+bμ2, a²σ1²+b²σ2²+2abρσ1σ2)其中a,b不全为0

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值