ZOJ 2853 Evolution (矩阵快速幂+数学)


点击打开链接


题意就是有编号为0~n-1的物种,总共要经过m次的进化,再给出t组从i到j的概率为z的进化方式,以及原来这n种物种各有几个,问经过m次进化以后,编号为n-1的物种有几个?


A为进化率的矩阵,A^m得到m次进化以后物种的变化。进化率矩阵的设计尤为重要,一开始假设所有物种都将进化为它本身,然后再根据输入的进化方式调整得到真正的进化率矩阵。



#include<cstdio>
#include<cstring>
int n;
struct matrix{
double a[200][200];
}ans, base;
matrix multiply(matrix x, matrix y)
{
    matrix tmp;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
        {
            tmp.a[i][j] = 0;
            for (int k = 0; k < n; k++) tmp.a[i][j] += x.a[i][k] * y.a[k][j];
        }
    return tmp;
}
void fast_mod(int k)
{
    while (k)
    {
        if (k & 1) ans = multiply(ans, base);
        base = multiply(base, base);
        k >>= 1;
    }
}
int main()
{
    int m, t, xi, yi;
    double s, zi, fin;
    int num[205];
    while (~scanf("%d%d", &n, &m) && !(n == 0 && m == 0))
    {
        for (int i = 0; i < n; i++) scanf("%d", &num[i]);
        scanf("%d", &t);
        memset(base.a, 0, sizeof(base.a));
        for (int i = 0; i < n; i++) base.a[i][i] = 1;
        while (t--)
        {
            scanf("%d%d%lf", &xi, &yi, &zi);
            base.a[xi][yi] += zi;
            base.a[xi][xi] -= zi;
        }
        memset(ans.a, 0, sizeof(ans.a));
        for (int i = 0; i < n; i++) ans.a[i][i] = 1;
        fast_mod(m);
        fin = 0;
        for (int i = 0; i < n; i++)
            fin += num[i] * ans.a[i][n-1];
        printf("%.0f\n", fin);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值