HDOJ 1573 X问题(中国剩余定理非互质版本)


http://acm.hdu.edu.cn/showproblem.php?pid=1573


#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL __int64
using namespace std;
LL n,k,m[100],a[100];//模数为m,余数为a, X % m = a
LL T, N, m0, a0;
//m不互素
LL extend_gcd(LL a, LL b, LL &x, LL &y)
{
    if(a == 0 && b == 0)return -1;
    if(b ==0 ){x = 1; y = 0;return a;}
    LL d = extend_gcd(b,a%b,y,x);
    y -= a/b*x;
    return d;
}
bool solve(LL &m0, LL &a0, LL m, LL a)
{
    LL y,x;
    LL g = extend_gcd(m0,m,x,y);
    if (abs(a - a0)%g)
        return false;
    x *= (a - a0)/g;
    x %= m/g;
    a0 = (x*m0 + a0);
    m0 *= m/g;
    a0 %= m0;
    if( a0 < 0 )a0 += m0;
    return true;
}
/*
* 无解返回false,有解返回true;
* 解的形式最后为 a0 + m0 * t (0<=a0<m0) a0是最小的非负整数解
*/
bool MLES(LL &m0, LL &a0, LL n)//解为 X = a0 + m0 * k
{
    bool flag = true;
    m0 = 1;
    a0 = 0;
    for(int i = 0; i < n; i++)
    if( !solve(m0,a0,m[i],a[i]) )
    {
        flag = false;
        break;
    }
    return flag;
}
int main()
{
    scanf("%I64d", &T);
    while (T--)
    {
        scanf("%I64d%I64d", &N, &n);
        for (int i = 0; i < n; i++) scanf("%I64d", &m[i]);
        for (int i = 0; i < n; i++) scanf("%I64d", &a[i]);
        if(!MLES(m0, a0, n) || a0 > N)
            printf("0\n");
        else
        {
            if(!a0)
                printf("%I64d\n",(N-a0)/m0);
            else
                printf("%I64d\n",(N-a0)/m0+1);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值