辗转相除法

  辗转相除法是一种很古老求两正整数最大公约数的算法,据传出自欧几里得的《几何原本》一书,可以追溯至公元前300年前。这也意味着,这一算法在2000多年后依然在流传,被使用。之前学习希尔排序的时候,还感叹这已横跨半世纪的算法依然生命力旺盛。现在又了解了这两千多年前的算法,感觉还是有点惊异的。
  
        这里写图片描述
  
  在辗转相除法里,两个正整数m和n,他们的最大公约数等于其中较大数除以较小数的余数与m, n之中的较小数的最大公约数。听着有点绕。假如要求18和30这两个数的最大公约数,那么,就是求12(30除以18余12)和18(18和30中的较小数)的最大公约数,然后可以递归下去。
  那么,如何证明呢? 

已知m>n, m ÷ n = a……b
c = gcd(m,n),d = gcd(n,b)
证明:c = d

1.设 m = k1*c,n = k2*c   #k1和k2均为正整数
则 b = m-na = (k1-k2*a)c
那么 n、b有公约数c          #n = k2*c
又 d = gcb(n,b)           #d是n和b的最大公约数
所以 c ≤ d

2.设 n = k3*d,b = k4*d   #d是n和b的最大公约数
则 m = na+b = (k3*a+k4)*d
那么 m、n有公约数d         #b = k4*d
又 c = gcb(m,n)          #c是m和n的最大公约数
所以 d ≤ c

由于 c ≤ d 且 d ≤ c,故 d = c,即gcd(m, n) = gcd(n, b)

下面用C语言实现这个算法。

int t = 0;
int gcd(int m, int n) {
    t = m > n ? n: m;
    m = m > n ? m: n;
    n = t;
    if (m % n == 0)
        return n;
    return gcd(m % n, n);
}

下面用python实现。

def gcd(m, n):
    m, n = (m, n) if m > n else (n, m)
    if m % n == 0:
        return n
    return gcd(m % n, n)
  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值