一、迭代器
我们已经知道,可以直接作用于for循环的数据类型有以下几种:一类是集合数据类型,如list、tuple、dict、set、str等;一类是generator,包括生成器和带yield的generator function。这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。可以使用isinstance()判断一个对象是否是Iterable对象:
from collections import Iterable
from collections import Iterator
print(isinstance([], Iterable))
print(isinstance((x for x in range(10)), Iterable))
敲黑板咯,重点!!!可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator~~~
print(isinstance([], Iterator))
生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。把list、dict、str等Iterable变成Iterator可以使用iter()函数:
print(isinstance(iter('abc'), Iterator))
有些人可能会问了,明明都是一样的通过for循环迭代从中取值,为啥还要把这些可迭代对象转化为迭代器。不就是多了一个可以next()吗???这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
所以Iterator甚至可以表示一个无限大的数据流,例如全体自然数(你用list等试试~~~。)。而使用list是永远不可能存储全体自然数的。
记忆方法: 凡是可作用于for循环的对象都是Iterable类型;凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。Python的for循环本质上就是通过不断调用next()函数实现的。
举个栗子:
for x in [1, 2, 3, 4, 5]:
pass
#实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
try:
# 获得下一个值:
x = next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break
小结:利用迭代器,我们不用一次存储那么多对象,如果对象是可以函数化的,我们通过迭代器,一次一取,就像之前说的,我们甚至可以表示自然数全体。