Python学习笔记(三)——Python的高级特性(再续)

一、迭代器

    我们已经知道,可以直接作用于for循环的数据类型有以下几种:一类是集合数据类型,如list、tuple、dict、set、str等;一类是generator,包括生成器和带yield的generator function。这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。可以使用isinstance()判断一个对象是否是Iterable对象:

from collections import Iterable
from collections import Iterator
print(isinstance([], Iterable))
print(isinstance((x for x in range(10)), Iterable))

    敲黑板咯,重点!!!可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator~~~

print(isinstance([], Iterator))

    生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。把list、dict、str等Iterable变成Iterator可以使用iter()函数:

print(isinstance(iter('abc'), Iterator))

    有些人可能会问了,明明都是一样的通过for循环迭代从中取值,为啥还要把这些可迭代对象转化为迭代器。不就是多了一个可以next()吗???这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    所以Iterator甚至可以表示一个无限大的数据流,例如全体自然数(你用list等试试~~~。)。而使用list是永远不可能存储全体自然数的。

    记忆方法:  凡是可作用于for循环的对象都是Iterable类型;凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。Python的for循环本质上就是通过不断调用next()函数实现的。

    举个栗子:

for x in [1, 2, 3, 4, 5]:
    pass
#实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

    小结:利用迭代器,我们不用一次存储那么多对象,如果对象是可以函数化的,我们通过迭代器,一次一取,就像之前说的,我们甚至可以表示自然数全体。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值