自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(69)
  • 收藏
  • 关注

原创 面试需要学习的编程知识(C++、Python)汇总-BMC(20190804建)(索引)

目录C++Python算法导论Linux其他编程问题C++static 结构体占多少字节 函数中的局部变量在内存中如何申请 C++的多态,及怎么实现,用例子说明 多态、继承、多态怎么实现(手写) C++内部实现机制 用过什么指针 C11特性了解吗 mat申请一个图像矩阵后怎么释放内存 set map低层实现的数据结构是什么 map,m[1]=“...

2019-08-04 18:50:46 528

原创 面试需要学习的基础知识汇总-BMC(20190804建)(索引)

目录深度学习机器学习论文图像处理面试问题深度学习attention机制:pixel还是frame,是soft还是hard 优化器,优化方法(化器有哪些,怎么演进的,平时怎么用,如何调参数)(非常重要) momentum 损失函数 softmax loss(手推) 网易游戏面试:手推卷积层BP,全连接层BP,pooling反传,LSTM,RNN,传统方法:手推S...

2019-08-04 18:50:32 736

原创 windows10 系统总是cpu使用率过高

参考文献:Windows10资源管理器占用CPU过高解决办法https://blog.csdn.net/sinat_34104446/article/details/70878075目前还没解决好。按教程操作后cpu使用率会下降,但过会儿又会升高。还是windows 7 好用。

2020-05-24 10:55:33 848

原创 docker 相关记录

docker 安装后启动失败,解决方案:更新yum后重启再重新安装试下,问题解决。(参考:https://segmentfault.com/q/1010000002392472)yum updateyum install dockersystemctl start docker...

2020-04-02 20:58:20 255

原创 conda 使用记录

删除虚拟环境:conda remove-n test_envremoves a package from an environment.conda env remove -n test_envremove the environment.

2020-02-11 11:38:34 241

原创 ffmpeg 在windows 下的安装和使用(python, 合并音频和视频)

参考:windows下ffmpeg的安装与python调用 https://blog.csdn.net/chunjiekid/article/details/882058241. 下载 ffmpeg window build版本包,地址:https://ffmpeg.zeranoe.com/builds/2. 解压解压后可以看到然后 bin里面有已经编译好的可执行...

2019-12-26 17:28:00 1706 1

原创 laplace 图像融合算法 学习记录

参考:​​​​​​​python版本:https://blog.csdn.net/FireMicrocosm/article/details/48489939c++版本:https://www.cnblogs.com/riddick/p/8922381.html原理:https://www.jianshu.com/p/3185cca3f082 (这篇原理很清晰)算...

2019-12-24 16:29:37 424

原创 多线程时,出现段错误

问题:1. 单线程运行没有任何问题,多线程时,有时会莫名出现段错误,但程序的结果是完全正确的。过段时间后,段错误又会自动修复。2. 多线程速度反而慢。...

2019-12-10 10:29:47 1872 1

原创 出现 Segmentation Fault 的原因

参考文献:Segmentation Fault错误原因总结 https://blog.csdn.net/u010150046/article/details/77775114析构函数 Segmentation Fault:在调试比较大的项目时,发现一直段错误,哪怕什么操作都不执行。后来发现由于代码是多人协同,我注释掉了别人的代码,其他人在代码中使用了new(),并且在析构函数...

2019-11-27 14:45:36 1764

原创 C++调用tensorflow动态库,实现inference,模型上线

参考: tensorflow c++ API加载.pb模型文件并预测图片https://www.cnblogs.com/buyizhiyou/p/10412967.html 【填坑】基于TensorFlow C++ API 的 gRPC 服务https://www.jianshu.com/p/725c45353c9d Tensorflow C++ 编译和调用图模型...

2019-08-23 14:00:47 1194

原创 机器学习算法索引(做完大疆笔试后再慢慢整理)

L-BFGShttps://www.cnblogs.com/zyfd/p/10120036.html二阶差分,因为有Hession矩阵,而Hession矩阵是二阶差分。神经网络为什么要归一化https://blog.csdn.net/liuheng0111/article/details/528418385.个人见解下面是网友关于为什么要归一化的一些回答(欢迎补充)...

2019-08-03 14:12:56 273

原创 编程题索引

数据结构面试题总结7——数组:最大连续子段和、最大连续子段积(动态规划,代码很简洁)https://blog.csdn.net/b_allen/article/details/46274993经典 - 最大和/最大积连续子序列问题https://blog.csdn.net/hertz2007/article/details/6446305(最大连续子段积)算法-动态规划:一个数组a[0....

2019-08-03 14:12:44 182

原创 AdaGrad算法

参考:深度学习优化方法-AdaGradhttps://blog.csdn.net/program_developer/article/details/80756008AdaGrad算法介绍表示第i个参数的梯度,对于经典的SGD优化方法,参数θ的更新为:再来看AdaGrad算法表示为:其中,r为梯度累积变量,r的初始值为0。ε为全局学习率,需要自己设置。δ为小常数,为了...

2019-08-02 17:04:52 9696

转载 分类网络

干货 | 一文总结经典 CNN 架构,从 LeNet 到 SENethttps://blog.csdn.net/qq_20084101/article/details/88255726

2019-07-26 16:46:13 215

原创 Pytorch 和 Tensorflow 区别

https://zhuanlan.zhihu.com/p/28636490图创建和调试赢家:PyTorch创建和运行计算图可能是两个框架最不同的地方。在PyTorch中,图结构是动态的,这意味着图在运行时构建。而在TensorFlow中,图结构是静态的,这意味着图先被“编译”然后再运行。举一个简单的例子,在PyTorch中你可以用标准的Python语法编写一个for循环结构f...

2019-07-26 15:50:43 7182

原创 Pytorch怎么实现反向传播(pytorch自动求微分的原理)

Tensor是PyTorch实现多维数组计算和自动微分的关键数据结构。可以对Tensor进行各种数学运算另一方面,当设置.requires_grad = True之后,在其上进行的各种操作就会被记录下来,用于后续的梯度计算,其内部实现机制被成为动态计算图autograd机制能够记录作用于Tensor上的所有操作,生成一个动态计算图。图的叶子节点是输入的数据,根节点是输出的结...

2019-07-26 15:33:31 3467

原创 Python 传址和传值

python的传值和传址是根据传入参数的类型来选择的(1)传值的参数类型:数字,字符串,元组(不可变类型)(2)传址的参数类型:列表,字典,集合(可变类型)传值示例:#coding:utf-8a = 2print(a)d=ad = 134print(a)def abc(a): a = 7 abc(a)print(a)传址示例:...

2019-07-24 20:29:35 578

原创 Dropout 学习记录

参考:深度学习中Dropout原理解析https://blog.csdn.net/program_developer/article/details/80737724目录1为什么要用 Dropout?2 什么是 Dropout?步骤:(1)训练阶段:(2)在测试模型阶段3. Dropout为什么可以解决过拟合?4 Dropout注意事项?4.1 缩放...

2019-07-24 11:56:57 1381

原创 Linux 分屏工具 tmux 安装、使用指南

安装:1.CentOS 下安装 tmuxhttps://www.zybuluo.com/mwumli/note/149542 (主要参考这篇,亲测可用)2.远程服务器中编译安装tmuxhttps://www.litreily.top/2017/08/23/tmux-install/(按教程安装后不能用)使用教程:Tmux使用手册http://louiszhai...

2019-07-21 20:49:27 252

转载 常见的损失函数

参考:常用损失函数小结https://blog.csdn.net/zhangjunp3/article/details/80467350本文主要总结一下常见的损失函数,包括:MSE均方误差损失函数、Cross Entropy交叉熵损失函数、目标检测中常用的Smooth L1损失函数。其中还会涉及到梯度消失、梯度爆炸等问题:ESM均方误差+Sigmoid激活函数会导致学习缓慢;Smooth...

2019-07-10 21:36:55 1137

转载 SGD和Adam

按吴恩达老师所说的,梯度下降(Gradient Descent)就好比一个人想从高山上奔跑到山谷最低点,用最快的方式(steepest)奔向最低的位置(minimum)。SGD基本公式动量(Momentum)参考链接:https://distill.pub/2017/momentum/基本的mini-batch SGD优化算法在深度学习取得很多不错的成...

2019-07-10 19:07:39 9211

转载 目标检测一条线

参考:RCNN- 将CNN引入目标检测的开山之作https://zhuanlan.zhihu.com/p/23006190RCNN-> SPP net -> Fast RCNN -> Faster RCNNhttps://zhuanlan.zhihu.com/p/25600546一文读懂Faster RCNNhttps://zhuanlan.zhihu.com/...

2019-07-10 16:33:53 511

转载 python 深拷贝和浅拷贝总结

目录1 Python | Python学习之深浅拷贝总结(重点关注)赋值、深浅拷贝图例(重点关注)2图解Python深拷贝和浅拷贝 对象赋值浅拷贝深拷贝拷贝的特殊情况(重点关注)总结(重点关注)1 Python | Python学习之深浅拷贝https://mp.weixin.qq.com/s?__biz=MzU0OTU5OTI4MA==&am...

2019-07-10 15:00:27 538

原创 Batch Norm (针对面试问题总结)

参考:基础 | batchnorm原理及代码详解https://blog.csdn.net/qq_25737169/article/details/79048516详解机器学习中的梯度消失、爆炸原因及其解决方法https://blog.csdn.net/qq_25737169/article/details/78847691Pytorch Batch Normalizatin la...

2019-07-10 14:20:06 4188

原创 全连接层的作用

参考全连接层的作用是什么?https://www.zhihu.com/question/41037974(1)全连接层(fully connected layers,FC)在整个卷积神经网络中起到“分类器”的作用。(2)将学到的“分布式特征表示”映射到样本标记空间的作用。(3)FC可一定程度保留模型复杂度(4)卷积神经网络中全连接层的设计,属于人们在传统特征提取+分类思维下的...

2019-07-10 11:20:05 25581 1

转载 偏导数、微分、以及导数到底有什么关系和区别?

偏导数、微分、以及导数到底有什么关系和区别? https://www.zhihu.com/question/265021971

2019-07-10 00:30:20 5770

转载 Sigmoid和Relu激活函数的对比

深度学习笔记(4)——Sigmoid和Relu激活函数的对比https://blog.csdn.net/qq_21190081/article/details/64127103Relu是一个非常优秀的激活哈数,相比较于传统的Sigmoid函数,有三个作用:1. 防止梯度弥散2. 稀疏激活性3. 加快计算首先我们看下sigmoid和relu的曲线然后可以得到sigm...

2019-07-10 00:20:17 19404

转载 目标检测中的 mAP

理解目标检测当中的mAPhttps://blog.csdn.net/hsqyc/article/details/817024371.IOU的概念IOU的概念应该比较简单,就是衡量监测框和标签框的重合程度。一张图就能解释,做目标检测小伙伴应该都清楚,我这里不赘述。2.TP TN FP FN的概念T或者N代表的是该样本是否被分类分对,P或者N代表的是该样本被分为什么TP...

2019-07-06 11:20:49 248

转载 快排

算法 3:最常用的排序——快速排序https://wiki.jikexueyuan.com/project/easy-learn-algorithm/fast-sort.html算法 3:最常用的排序——快速排序上一节的冒泡排序可以说是我们学习第一个真正的排序算法,并且解决了桶排序浪费空间的问题,但在算法的执行效率上却牺牲了很多,它的时间复杂度达到了O(N2)。假如我们的计算机每秒钟...

2019-07-05 17:08:13 181

原创 Python 中 is 和 == 区别

参考:Python中is和==的区别https://www.cnblogs.com/wangkun122/p/9082088.htmlPython中对象包含的三个基本要素,分别是:id(身份标识)、type(数据类型)和value(值)。is和==都是对对象进行比较判断作用的,但对对象比较判断的内容并不相同。==和is同一性运算符区别==(比较操作符)是python标准操作...

2019-07-05 10:59:59 160

原创 BatchNorm作用*(加速收敛,提高泛化能力,即防止过拟合)

暂存链接:关于BN层为什么加 /gamma 和 /beta,以及BN位于激活层前还是激活层后。:(天空之城)Feature Scaling 和 Batch Norm 笔记https://shomy.top/2017/12/05/Feature-Scaling-Batch-Norm/加速收敛,因为神经网络本质上是学习数据的分布情况,而mini-batch每次都会有不同的分布,也就是...

2019-07-04 00:46:12 7975

原创 线程和进程(未完结)

1. 概念对于操作系统来说,一个任务就是一个进程(Process),比如打开一个浏览器就是启动一个浏览器进程,打开一个记事本就启动了一个记事本进程,打开两个记事本就启动了两个记事本进程,打开一个Word就启动了一个Word进程。在一个进程内部,要同时干多件事,就需要同时运行多个“子任务”,我们把进程内的这些“子任务”称为线程(Thread)。多任务:一种是启动多个进程,每个进程虽然...

2019-07-03 13:41:30 118

转载 NMS 非极大值抑制

来自这篇博客【目标检测】NMS(Non-maximum suppression,非极大值抑制)算法https://blog.csdn.net/heiheiya/article/details/81169758

2019-07-03 13:41:10 152

转载 归一化和标准化区别

作者:小松链接:https://www.zhihu.com/question/20467170/answer/463834078来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。归一化:对数据的数值范围进行特定缩放,但不改变其数据分布的一种线性特征变换。1.min-max 归一化:将数值范围缩放到(0,1),但没有改变数据分布;min-max归...

2019-07-03 01:36:29 6074

原创 C++ 虚函数

参考:c++虚函数的作用是什么?https://www.zhihu.com/question/23971699作者:wuxinliulei链接:https://www.zhihu.com/question/23971699/answer/69592611来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。总结:1、纯虚函数声明如下: vir...

2019-07-02 10:40:51 240

原创 Python xrange 和range的区别

range(1000)会返回一个长度为1000的数组,而xrange(1000)会返回一个生成器,在需要的情况下返回一个数字,此时空间的占用情况会大为减少。所以为了提升性能,在做循环的时候,应该尽可能的使用xrange,除非需要用range返回一个数组。In [9]: xrange(5)Out[9]: xrange(5)In [10]: range(5)Out[10]: [0...

2019-07-01 20:08:15 490

原创 Python中生成器和迭代器的区别

参考博客:https://blog.csdn.net/xiongjiezk/article/details/51186968迭代器(iterator)是一个实现了迭代器协议的对象,python的一些内置数据类型(列表,数组,字符串,字典等)都可以通过for语句进行迭代,我们也可以自己创建一个容器,实现了迭代器协议,可以通过for,next方法进行迭代,在迭代的末尾,会引发stopIt...

2019-07-01 20:06:30 242

原创 Python 生成器和迭代器

主要参考:python 生成器和迭代器有这篇就够了https://www.cnblogs.com/wj-1314/p/8490822.html中间加入了自己的一些理解-------------------------------------------------------------------------------------------------------------...

2019-07-01 17:03:13 111

原创 Python for循环的数据类型

可以直接作用于for循环的数据类型有以下几种:一类是集合数据类型,如list,tuple,dict,set,str等一类是generator,包括生成器和带yield的generator function这些可以直接作用于for 循环的对象统称为可迭代对象:Iterable可以使用isinstance()判断一个对象是否为可Iterable对象>>> fro...

2019-07-01 16:14:57 3409

原创 优化器算法总结(BGD、SGD、MBGD、Momentum、NAG、Adagrad 未总结完)

参考的两篇博文(1) 优化算法总结-深度学习https://blog.csdn.net/fengzhongluoleidehua/article/details/81104051(2)深度学习——优化器算法Optimizer详解(BGD、SGD、MBGD、Momentum、NAG、Adagrad、Adadelta、RMSprop、Adam)https://www.cnblogs....

2019-07-01 15:29:52 1473

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除