Harvest of Apples [HDU 6333] 莫队+组合数

题目:

题目链接:Harvest of Apples [HDU 6333]
题解:
看完这个题,简单的推一下就知道题目让求的是 ∑ i = 0 m ( n i ) \sum_{i=0}^m\tbinom{n}{i} i=0m(in)
这样子的话,我们就来推一波式子,,,
F ( n , m ) = ( n 0 ) + ( n 1 ) + ⋅ ⋅ ⋅ + ( n m ) F(n,m)=\tbinom{n}{0}+\tbinom{n}{1}+···+\tbinom{n}{m} F(n,m)=(0n)+(1n)++(mn)
= ( n 0 ) + ( n − 1 0 ) + ( n − 1 1 ) + ( n − 1 1 ) + ( n − 1 2 ) + ⋅ ⋅ ⋅ + ( n − 1 m − 1 ) + ( n − 1 m − 1 ) = ( n − 1 m ) =\tbinom{n}{0}+\tbinom{n-1}{0}+\tbinom{n-1}{1}+\tbinom{n-1}{1}+\tbinom{n-1}{2}+···+\tbinom{n-1}{m-1}+\tbinom{n-1}{m-1}=\tbinom{n-1}{m} =(0n)+(0n1)+(1n1)+(1n1)+(2n1)++(m1n1)+(m1n1)=(mn1)
= ( n 0 ) + 2 ( ( n − 1 1 ) + ( ( n − 1 2 ) + ⋅ ⋅ ⋅ + ( ( n − 1 m − 1 ) ) + ( ( n − 1 m ) =\tbinom{n}{0}+2(\tbinom{n-1}{1}+(\tbinom{n-1}{2}+···+(\tbinom{n-1}{m-1})+(\tbinom{n-1}{m} =(0n)+2((1n1)+((2n1)++((m1n1))+((mn1)
由此,我们就可以得出:
F ( n − 1 , m ) = F ( n , m ) + ( n − 1 m ) 2 F(n-1,m)=\frac{F(n,m)+\tbinom{n-1}{m}}{2} F(n1,m)=2F(n,m)+(mn1)
因此,递推式就为:
F ( n , m ) = 2 ∗ F ( n − 1 , m ) + ( n − 1 m ) F(n,m)=2*F(n-1,m)+\tbinom{n-1}{m} F(n,m)=2F(n1,m)+(mn1)
这样我们就可以求出 F ( n , m ) F(n,m) F(n,m),但是呢,怎么 O ( 1 ) O(1) O(1)求出 F ( n − 1 , m ) F(n-1,m) F(n1,m) F ( n , m − 1 ) F(n,m-1) F(n,m1) F ( n − 1 , m − 1 ) F(n-1,m-1) F(n1,m1),这时候我们就想到了——————莫队啊!!!
(这样题就做完了,,,,,,,(今天不想发表情))

代码:

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define mod 1000000007
using namespace std;
inline LL read()
{
	LL s=0,w=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch<='9'&&ch>='0')s=s*10+ch-'0',ch=getchar();
	return s*w;
}
const int sea=100010;
struct hit{int l,r,id,belong;}q[sea];
int T,block;
LL n,m,jc[sea],c[sea],ins[sea],ans[sea];
bool cmp(hit a,hit b)
{
    if (a.belong!=b.belong) return a.l<b.l;
    if (a.belong&1) return a.r<b.r; return a.r>b.r;
}//超推荐的奇偶判断,用在莫队里,直接降低一半的运行时间(否则我也不会T掉半天)
LL ksm(LL a ,LL b)
{
	LL s=1;
	while(b)
	{
		if(1&b) s=s*a%mod;
		b>>=1; a=a*a%mod; 
	}
	return s%mod;
}
void ycl()
{
	jc[0]=1;jc[1]=1;ins[1]=1; ins[0]=1;
	for(int i=1;i<=sea;i++) jc[i]=jc[i-1]*i%mod,ins[i]=ksm(jc[i],mod-2)%mod;
}
LL C(int a,int b)
{
	if(a<b) return 0;
	return jc[a]*ins[b]%mod*ins[a-b]%mod;
}
int main()
{
	ycl();
	scanf("%d",&T); block=sqrt(100000);
	for(int i=1;i<=T;i++) q[i].r=read(),q[i].l=read(),q[i].id=i,q[i].belong=q[i].l/block;
	sort(q+1,q+T+1,cmp);
	int L=1,R=1;LL Ans=2;
	for(int i=1;i<=T;i++)
	{
		while(L<q[i].l) Ans=(Ans+C(R,L+1))%mod,L++;
		while(L>q[i].l) L--,Ans=(Ans-C(R,L+1)+mod)%mod;
		while(R<q[i].r) R++,Ans=(2*Ans-C(R-1,L)+mod)%mod;
		while(R>q[i].r) Ans=(Ans+C(R-1,L))*ins[2]%mod,R--;
		ans[q[i].id]=Ans;
	}
	for(int i=1;i<=T;i++) printf("%d\n",ans[i]);
	return 0;
}

遇见,是个多美妙的词语,能遇见你,是件多美妙的事情。——Blng

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值