【图论杂题】:B.road [Floyed 倍增]

题目:

团队链接:road
原题链接:LUOGU P1613 跑路

题面:

给定 n n n个点 m m m条边的有向图,单位时间内可经过 2 k 2^k 2k条边( k ∈ N ∗ k \in N^* kN),求从点 1 1 1到点 n n n耗费的最少时间
范围:
n < = 50 , m < = 10000 n<=50,m<=10000 n<=50,m<=10000,
数据保证最优解路径长度 < = m a x l o n g i n t <=max long int <=maxlongint

样例:

输入:

7 8
1 6
5 1
6 4
4 5
5 2
3 7
7 5
2 3

输出:

2
题解:

这一看 n n n的范围,就知道,,,Floyed倍增啊,就是个板子题,,,设 f [ i ] [ j ] [ k ] = 1 / 0 f[i][j][k]=1/0 f[i][j][k]=1/0这就表示从i到j长度为2^i的路径是否存在,预处理类似Floyed的距离: f [ i ] [ j ] [ l ] ∣ = f [ i ] [ k ] [ l − 1 ] a n d f [ k ] [ j ] [ l − 1 ] f[i][j][l] |=f[i][k][l-1] and f[k][j][l-1] f[i][j][l]=f[i][k][l1]andf[k][j][l1],不妨设先走 长的路径,再走短的路径, d i s [ i ] [ j ] dis[i][j] dis[i][j]表示走到第j个点,上次跑路的长度至少为2i,由于两次跑路长度相同必然不优,所以当前长度 要么不走,要么走一次, d i s [ 1 ] [ n ] dis[1][n] dis[1][n]即为所求的答案。复杂度为 O ( 30 ∗ n 3 ) O(30*n^3) O(30n3)

代码:

#include<bits/stdc++.h>
using namespace std;
inline int read()
{
	int s=0,w=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
	while(ch<='9'&&ch>='0')s=s*10+ch-'0',ch=getchar();
	return s*w;
} 
const int sea=55;
int n,m,f[sea][sea][21];
int dis[sea][sea];
int main()
{
	n=read(); m=read();
	for(int i=1;i<=m;i++)
	{
		int x,y; x=read(); y=read(); 
		f[x][y][0]=1;
	}
	for(int l=1;l<=20;l++)//倍增预处理路径
	for(int k=1;k<=n;k++)
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	f[i][j][l]|=f[i][k][l-1]&f[k][j][l-1];
	memset(dis,0x3f,sizeof(dis));//预处理dis
	for(int k=0;k<=20;k++)
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	if(f[i][j][k]) dis[i][j]=1;
	for(int k=1;k<=n;k++)//Floyed
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++) 
	if(dis[i][k]&&dis[k][j])
	dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
	printf("%d\n",dis[1][n]);
	return 0;
} 

Continue……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值