题目:
团队链接:road
原题链接:LUOGU P1613 跑路
题面:
给定
n
n
n个点
m
m
m条边的有向图,单位时间内可经过
2
k
2^k
2k条边(
k
∈
N
∗
k \in N^*
k∈N∗),求从点
1
1
1到点
n
n
n耗费的最少时间
范围:
n
<
=
50
,
m
<
=
10000
n<=50,m<=10000
n<=50,m<=10000,
数据保证最优解路径长度
<
=
m
a
x
l
o
n
g
i
n
t
<=max long int
<=maxlongint
样例:
输入:
7 8
1 6
5 1
6 4
4 5
5 2
3 7
7 5
2 3
输出:
2
题解:
这一看 n n n的范围,就知道,,,Floyed倍增啊,就是个板子题,,,设 f [ i ] [ j ] [ k ] = 1 / 0 f[i][j][k]=1/0 f[i][j][k]=1/0这就表示从i到j长度为2^i的路径是否存在,预处理类似Floyed的距离: f [ i ] [ j ] [ l ] ∣ = f [ i ] [ k ] [ l − 1 ] a n d f [ k ] [ j ] [ l − 1 ] f[i][j][l] |=f[i][k][l-1] and f[k][j][l-1] f[i][j][l]∣=f[i][k][l−1]andf[k][j][l−1],不妨设先走 长的路径,再走短的路径, d i s [ i ] [ j ] dis[i][j] dis[i][j]表示走到第j个点,上次跑路的长度至少为2i,由于两次跑路长度相同必然不优,所以当前长度 要么不走,要么走一次, d i s [ 1 ] [ n ] dis[1][n] dis[1][n]即为所求的答案。复杂度为 O ( 30 ∗ n 3 ) O(30*n^3) O(30∗n3)
代码:
#include<bits/stdc++.h>
using namespace std;
inline int read()
{
int s=0,w=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch<='9'&&ch>='0')s=s*10+ch-'0',ch=getchar();
return s*w;
}
const int sea=55;
int n,m,f[sea][sea][21];
int dis[sea][sea];
int main()
{
n=read(); m=read();
for(int i=1;i<=m;i++)
{
int x,y; x=read(); y=read();
f[x][y][0]=1;
}
for(int l=1;l<=20;l++)//倍增预处理路径
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f[i][j][l]|=f[i][k][l-1]&f[k][j][l-1];
memset(dis,0x3f,sizeof(dis));//预处理dis
for(int k=0;k<=20;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(f[i][j][k]) dis[i][j]=1;
for(int k=1;k<=n;k++)//Floyed
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(dis[i][k]&&dis[k][j])
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
printf("%d\n",dis[1][n]);
return 0;
}