图论最短路径之Floyed算法

在一些带权图里面,时长需要我们求出某一点到另一点的最短距离,floyed算法就是求最短路径的算法之一。其核心思想是经过某点中转,加入A点到B点的距离是10,B点到C点的距离为5,A点到C点的距离为20(此图将距离设定为权值),而且该图为有向图。图的形状如下图所示:

可以看出,如果直接从A点到C点,权值是20,如果经过B点中转,然后到达C点,那么权值将变为15,这就是A到C点的最短路径(A->B->C)。众所周知,我们可以使用二维数组来存储图(该二维数组被称为邻接矩阵),当我们需要求最短路径时,在中转时,判断A点到C点的距离是否大于A点到B点再到C点的距离,如果大于将更新邻接矩阵中的A到C点的距离为A点到B点再到C点的距离

if(length[A][C]>length[A][B]+length[B][C])
   length[A][C]=length[A][B]+length[B][C]

 如果给了N个点,那么将需要N次中转。因为邻接矩阵是一个NxN的二维数组,我们需要遍历这个数组。如下一个例子,首先给出点的个数和点的坐标,在给出点的连接关系,求出S点到T点的距离(S和T为用户的输入数据)

1.点的个数和坐标

4

1 1(第一个点)

2 3(第二个点)

3 4 (第三个点)

4 5(第四个点)

2.点的连接关系

1 2(表示第一个点和第二个点是联通的)

2 3

3 4

1 4

3.用户输入

S=2,T=4;

源码:

floyed.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
void floyed(double arr[][10],int m) {//floyed算法
	for (int k = 0; k < m; k++) {
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < m; j++) {
				if ((i != j )&& (i != k) && (j != k) && (arr[i][k] + arr[k][j] < arr[i][j])) {
					arr[i][j] = arr[i][k] + arr[k][j];//更新邻接矩阵的值
				}
			}
		}
	}
}

main.cpp

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <cmath>
#include <vector>
#include <cstring>
using namespace std;
void floyed(double arr[][10],int m) {//floyed算法
	for (int k = 0; k < m; k++) {
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < m; j++) {
				if ((i != j )&& (i != k) && (j != k) && (arr[i][k] + arr[k][j] < arr[i][j])) {
					arr[i][j] = arr[i][k] + arr[k][j];
				}
			}
		}
	}
}
int main(){
	vector<vector<double> > array;
	int m;
	cin >> m;//点的个数
	for (int i = 0; i < m; i++) {
		vector<double> nums;
		int x, y;
		cin >> x >> y;//横纵坐标
		nums.push_back(x);
		nums.push_back(y);
		array.push_back(nums);
	}
	int n;
	cin >> n;
	double arr[10][10];//邻接矩阵存图
	for (int i = 0; i <= 9; i++) {
		for (int j = 0; j <= 9; j++) {
			if (i == j) {
				arr[i][j] == 0;
			}
			else {
			    arr[i][j] = 1000000007;//初始化邻接矩阵,是最大值说明两点不可达
			}
		}
	}
	for (int i = 0; i < n; i++) {
		int x, y;//两个点是否联通
		cin >> x >> y;
		x = x - 1; //减一是因为邻接矩阵的下标从0开始
		y = y - 1;
		arr[x][y] = sqrt(pow(double(array[x][0]-array[y][0]),2)+pow(double(array[x][1]-array[y][1]),2));//求出联通两点之间的距离
		arr[y][x] = arr[x][y];
	}
	floyed(arr, m);//调用floyed算法
	int s, t;
	cin >> s >> t;
	s = s - 1;
	t = t - 1;
	cout << arr[s][t] << endl;
	return 0;
}

运行结果:

第二个点到第四个点的最短距离为2.82843。该算法时间复杂度为O(N^3),虽然该算法可以处理带有负权值的图,但是不能处理负环的图。负环,又叫负权回路,负权环,指的是一个图中存在一个环,里面包含的边的边权总和<0。在存在负环的图中,是求不出最短路径的,因为只要在这个环上不停的兜圈子,最短路径就会无限小。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值